Namitg02 commited on
Commit
377be67
·
verified ·
1 Parent(s): e9b987a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +97 -42
app.py CHANGED
@@ -42,75 +42,130 @@ from langchain_core.messages import SystemMessage
42
  from langchain_core.prompts import HumanMessagePromptTemplate
43
  from langchain_core.prompts import ChatPromptTemplate
44
  from langchain.prompts import PromptTemplate
 
 
45
 
46
  print("check1")
47
  question = "How can I reverse Diabetes?"
48
 
 
 
 
 
 
49
 
50
- #template = """Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer. Use three sentences maximum. Keep the answer as concise as possible. Always say "thanks for asking!" at the end of the answer.
51
- #{context}
52
- #Question: {question}
53
- #Helpful Answer:"""
54
 
55
- #QA_CHAIN_PROMPT = PromptTemplate(input_variables=["context", "question"],template=template)
56
 
57
  from transformers import AutoTokenizer
58
- from transformers import AutoModelForCausalLM
 
59
 
60
  llm_model = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
61
- tokenizer = AutoTokenizer.from_pretrained(llm_model)
62
- model = AutoModelForCausalLM.from_pretrained(llm_model)
63
- pipe = pipeline(model = llm_model, tokenizer = tokenizer, task = "text-generation", temperature=0.5)
64
 
65
- #question = "How can I reverse diabetes?"
66
- #docs1 = retriever.invoke(question)
67
- #docs1 = retriever.similarity_search(question)
68
- #print(docs1[0].page_content)
69
 
70
- import pandas as pd
71
- #df = pd.DataFrame(docs1, columns=["text"])
72
- #context = df.to_string()
73
- #print(context)
74
 
75
- #print(docs1)[0]['generated_text'][-1]
76
 
77
- print("check2")
 
 
 
 
 
 
 
78
 
 
79
 
80
- #question = "How can I reverse diabetes?"
81
- print("result")
82
 
83
- print("check3")
 
 
 
 
 
84
 
85
- messages = [
86
- {
87
- "role": "system",
88
- "content": "You are a friendly chatbot who responds in the style of a doctor",
89
- },
90
- {"role": "user", "content": "How can I reverse diabetes?"},
91
- ]
92
- prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
93
- chain = pipe(prompt, max_new_tokens=256, do_sample=True)
94
- print(chain[0]["generated_text"])
95
 
96
- #chain = pipe(question = question,context = "Use the following information to answer the question. Diabetes can be cured by eating apples.")
97
 
98
 
 
99
 
100
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
101
 
102
- #chain = pipe(question = question,context = "Use the following information to answer the question. {context}.")
103
- #context = "Use the following information to answer the question. Diabetes can be cured by eating apples."
104
 
105
- print("check3A")
106
- #print(chain)[0]['generated_text'][-1]
107
  print("check3B")
108
 
 
 
 
 
 
109
  import gradio as gr
110
- #ragdemo = gr.Interface.from_pipeline(chain)
111
 
112
- interface = gr.Interface.from_pipeline(chain).launch(share=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
113
 
114
- print("check4")
115
- #ragdemo.launch()
116
- print("check5")
 
42
  from langchain_core.prompts import HumanMessagePromptTemplate
43
  from langchain_core.prompts import ChatPromptTemplate
44
  from langchain.prompts import PromptTemplate
45
+ import time
46
+
47
 
48
  print("check1")
49
  question = "How can I reverse Diabetes?"
50
 
51
+ SYS_PROMPT = """You are an assistant for answering questions.
52
+ You are given the extracted parts of a long document and a question. Provide a conversational answer.
53
+ If you don't know the answer, just say "I do not know." Don't make up an answer."""
54
+
55
+ print("check2")
56
 
 
 
 
 
57
 
 
58
 
59
  from transformers import AutoTokenizer
60
+ from transformers import AutoModelForCausalLM, TextIteratorStreamer
61
+ from threading import Thread
62
 
63
  llm_model = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
64
+ tokenizer = AutoTokenizer.from_pretrained(llm_model,token=token)
65
+ model = AutoModelForCausalLM.from_pretrained(llm_model,token=token)
66
+ #pipe = pipeline(model = llm_model, tokenizer = tokenizer, task = "text-generation", temperature=0.5)
67
 
68
+ terminators = [
69
+ tokenizer.eos_token_id,
70
+ tokenizer.convert_tokens_to_ids("<|eot_id|>")
71
+ ]
72
 
 
 
 
 
73
 
 
74
 
75
+ def search(query: str, k: int = 3 ):
76
+ """a function that embeds a new query and returns the most probable results"""
77
+ embedded_query = embedding_model.encode(query) # embed new query
78
+ scores, retrieved_examples = data.get_nearest_examples( # retrieve results
79
+ "embeddings", embedded_query, # compare our new embedded query with the dataset embeddings
80
+ k=k # get only top k results
81
+ )
82
+ return scores, retrieved_examples
83
 
84
+ print("check2A")
85
 
 
 
86
 
87
+ def format_prompt(prompt,retrieved_documents,k):
88
+ """using the retrieved documents we will prompt the model to generate our responses"""
89
+ PROMPT = f"Question:{prompt}\nContext:"
90
+ for idx in range(k) :
91
+ PROMPT+= f"{retrieved_documents['text'][idx]}\n"
92
+ return PROMPT
93
 
 
 
 
 
 
 
 
 
 
 
94
 
95
+ print("check3")
96
 
97
 
98
+ print("check3A")
99
 
100
 
101
+ def talk(prompt,history):
102
+ k = 1 # number of retrieved documents
103
+ scores , retrieved_documents = search(prompt, k)
104
+ formatted_prompt = format_prompt(prompt,retrieved_documents,k)
105
+ formatted_prompt = formatted_prompt[:2000] # to avoid GPU OOM
106
+ messages = [{"role":"system","content":SYS_PROMPT},{"role":"user","content":formatted_prompt}]
107
+ # tell the model to generate
108
+ input_ids = tokenizer.apply_chat_template(
109
+ messages,
110
+ add_generation_prompt=True,
111
+ return_tensors="pt"
112
+ ).to(model.device)
113
+ outputs = model.generate(
114
+ input_ids,
115
+ max_new_tokens=1024,
116
+ eos_token_id=terminators,
117
+ do_sample=True,
118
+ temperature=0.6,
119
+ top_p=0.9,
120
+ )
121
+ streamer = TextIteratorStreamer(
122
+ tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
123
+ )
124
+ generate_kwargs = dict(
125
+ input_ids= input_ids,
126
+ streamer=streamer,
127
+ max_new_tokens=1024,
128
+ do_sample=True,
129
+ top_p=0.95,
130
+ temperature=0.75,
131
+ eos_token_id=terminators,
132
+ )
133
+ t = Thread(target=model.generate, kwargs=generate_kwargs)
134
+ t.start()
135
+
136
+
137
+ outputs = []
138
+ for text in streamer:
139
+ outputs.append(text)
140
+ print(outputs)
141
+ yield "".join(outputs)
142
 
 
 
143
 
 
 
144
  print("check3B")
145
 
146
+
147
+ TITLE = "AI Copilot for Diabetes Patients"
148
+
149
+ DESCRIPTION = ""
150
+
151
  import gradio as gr
 
152
 
153
+ demo = gr.ChatInterface(
154
+ fn=talk,
155
+ chatbot=gr.Chatbot(
156
+ show_label=True,
157
+ show_share_button=True,
158
+ show_copy_button=True,
159
+ likeable=True,
160
+ layout="bubble",
161
+ bubble_full_width=False,
162
+ ),
163
+ theme="Soft",
164
+ examples=[["what is Diabetes? "]],
165
+ title=TITLE,
166
+ description=DESCRIPTION,
167
+
168
+ )
169
+ demo.launch(debug=True)
170
 
171
+ print("check4")