Update app.py
Browse files
app.py
CHANGED
@@ -16,11 +16,13 @@ llm_model = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
|
16 |
tokenizer = AutoTokenizer.from_pretrained(llm_model)
|
17 |
# pulling tokeinzer for text generation model
|
18 |
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
#datasetiter = load_dataset("Namitg02/Test", split='train', streaming=False)
|
21 |
-
#dataset = list(datasetiter)
|
22 |
#dataset = load_dataset("not-lain/wikipedia",revision = "embedded")
|
23 |
-
dataset = load_dataset("epfl-llm/guidelines", split='train')
|
24 |
#Returns a list of dictionaries, each representing a row in the dataset.
|
25 |
print(dataset[1])
|
26 |
length = len(dataset)
|
@@ -35,27 +37,27 @@ embedding_model = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")
|
|
35 |
#doc_func = lambda x: x.text
|
36 |
#dataset = list(map(doc_func, dataset))
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
|
45 |
#print(embeddings)
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
|
51 |
-
|
52 |
#data = FAISS.from_embeddings(embed, embedding_model)
|
53 |
#data = FAISS.from_texts(docs, embedding_model)
|
54 |
|
55 |
# Returns a FAISS wrapper vector store. Input is a list of strings. from_documents method used documents to Return VectorStore
|
56 |
# add_embeddings
|
57 |
-
data = dataset["clean_text"]
|
58 |
-
|
59 |
|
60 |
#print(data)
|
61 |
d = 384 # vectors dimension
|
|
|
16 |
tokenizer = AutoTokenizer.from_pretrained(llm_model)
|
17 |
# pulling tokeinzer for text generation model
|
18 |
|
19 |
+
import numpy as np
|
20 |
+
|
21 |
+
datasetiter = load_dataset("Namitg02/Test", split='train', streaming=False)
|
22 |
+
dataset = np.array(list(datasetiter))
|
23 |
|
|
|
|
|
24 |
#dataset = load_dataset("not-lain/wikipedia",revision = "embedded")
|
25 |
+
#dataset = load_dataset("epfl-llm/guidelines", split='train')
|
26 |
#Returns a list of dictionaries, each representing a row in the dataset.
|
27 |
print(dataset[1])
|
28 |
length = len(dataset)
|
|
|
37 |
#doc_func = lambda x: x.text
|
38 |
#dataset = list(map(doc_func, dataset))
|
39 |
|
40 |
+
def embedder(dataset):
|
41 |
+
embeddings = embedding_model.encode(dataset["text"])
|
42 |
+
dataset = dataset.add_column('embeddings', embeddings)
|
43 |
+
return dataset
|
44 |
+
updated_dataset = dataset.map(embedder)
|
45 |
+
dataset['text'][:length]
|
46 |
|
47 |
#print(embeddings)
|
48 |
|
49 |
+
print(updated_dataset[1])
|
50 |
+
print(updated_dataset[2])
|
51 |
+
print(dataset[1])
|
52 |
|
53 |
+
embedding_dim = embedding_model.get_sentence_embedding_dimension()
|
54 |
#data = FAISS.from_embeddings(embed, embedding_model)
|
55 |
#data = FAISS.from_texts(docs, embedding_model)
|
56 |
|
57 |
# Returns a FAISS wrapper vector store. Input is a list of strings. from_documents method used documents to Return VectorStore
|
58 |
# add_embeddings
|
59 |
+
#data = dataset["clean_text"]
|
60 |
+
data = updated_dataset["text"]
|
61 |
|
62 |
#print(data)
|
63 |
d = 384 # vectors dimension
|