Update app.py
Browse files
app.py
CHANGED
@@ -133,28 +133,21 @@ def talk(prompt, history):
|
|
133 |
|
134 |
# formatted_prompt_with_history = formatted_prompt_with_history[:600] # to avoid memory issue
|
135 |
# print(formatted_prompt_with_history)
|
136 |
-
messages = [{"role":"system","content":SYS_PROMPT},{"role":"user","content":formatted_prompt}]
|
137 |
# binding the system context and new prompt for LLM
|
138 |
# the chat template structure should be based on text generation model format
|
139 |
print("check6")
|
140 |
-
print(messages)
|
141 |
-
print("check7")
|
142 |
-
streamer = TextIteratorStreamer(
|
143 |
-
tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
|
144 |
-
)
|
145 |
-
# stores print-ready text in a queue, to be used by a downstream application as an iterator. removes special tokens in generated text.
|
146 |
-
# timeout for text queue. tokenizer for decoding tokens
|
147 |
-
# called by generate_kwargs
|
148 |
|
149 |
terminators = [
|
150 |
tokenizer.eos_token_id, # End-of-Sequence Token that indicates where the model should consider the text sequence to be complete
|
151 |
tokenizer.convert_tokens_to_ids("<|eot_id|>") # Converts a token strings in a single/ sequence of integer id using the vocabulary
|
152 |
]
|
153 |
# indicates the end of a sequence
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
|
|
158 |
# text += output["choices"][0]["text"]
|
159 |
# yield text
|
160 |
|
@@ -171,16 +164,6 @@ def talk(prompt, history):
|
|
171 |
# print("check7")
|
172 |
# print(input_ids.dtype)
|
173 |
|
174 |
-
# generate_kwargs = dict(
|
175 |
-
# tokens= input_ids) #,
|
176 |
-
# streamer=streamer,
|
177 |
-
# do_sample=True,
|
178 |
-
# eos_token_id=terminators,
|
179 |
-
# )
|
180 |
-
|
181 |
-
# outputs = model.generate(
|
182 |
-
# )
|
183 |
-
# print(outputs)
|
184 |
# calling the model to generate response based on message/ input
|
185 |
# do_sample if set to True uses strategies to select the next token from the probability distribution over the entire vocabulary
|
186 |
# temperature controls randomness. more renadomness with higher temperature
|
@@ -202,6 +185,7 @@ def talk(prompt, history):
|
|
202 |
# for token in model.generate(tokens):
|
203 |
# print(model.detokenize([token]))
|
204 |
# input_ids = tokenizer(*messages)
|
|
|
205 |
# print(model.generate(tensor([[ 1, 529, 29989, 5205, 29989]])))
|
206 |
# start = time.time()
|
207 |
# NUM_TOKENS=0
|
@@ -218,19 +202,7 @@ def talk(prompt, history):
|
|
218 |
# print(f'Time per token: {(time_generate/NUM_TOKENS)*1000}ms')
|
219 |
|
220 |
|
221 |
-
|
222 |
-
pd.options.display.max_colwidth = 800
|
223 |
-
print("check13")
|
224 |
-
# outputstring = ''.join(outputs)
|
225 |
|
226 |
-
# global historylog
|
227 |
-
# historynew = {
|
228 |
-
# "Prompt": prompt,
|
229 |
-
# "Output": outputstring
|
230 |
-
# }
|
231 |
-
# historylog.append(historynew)
|
232 |
-
# return historylog
|
233 |
-
# print(historylog)
|
234 |
|
235 |
|
236 |
TITLE = "AI Copilot for Diabetes Patients"
|
|
|
133 |
|
134 |
# formatted_prompt_with_history = formatted_prompt_with_history[:600] # to avoid memory issue
|
135 |
# print(formatted_prompt_with_history)
|
136 |
+
# messages = [{"role":"system","content":SYS_PROMPT},{"role":"user","content":formatted_prompt}]
|
137 |
# binding the system context and new prompt for LLM
|
138 |
# the chat template structure should be based on text generation model format
|
139 |
print("check6")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
terminators = [
|
142 |
tokenizer.eos_token_id, # End-of-Sequence Token that indicates where the model should consider the text sequence to be complete
|
143 |
tokenizer.convert_tokens_to_ids("<|eot_id|>") # Converts a token strings in a single/ sequence of integer id using the vocabulary
|
144 |
]
|
145 |
# indicates the end of a sequence
|
146 |
+
|
147 |
+
output = model.create_chat_completion(messages = [{"role":"system","content":SYS_PROMPT},{"role":"user","content":formatted_prompt}], max_tokens=1000, stop=["</s>"], stream=True)
|
148 |
+
print(output['choices'][0]['message']['content'])
|
149 |
+
|
150 |
+
# for output in stream:
|
151 |
# text += output["choices"][0]["text"]
|
152 |
# yield text
|
153 |
|
|
|
164 |
# print("check7")
|
165 |
# print(input_ids.dtype)
|
166 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
# calling the model to generate response based on message/ input
|
168 |
# do_sample if set to True uses strategies to select the next token from the probability distribution over the entire vocabulary
|
169 |
# temperature controls randomness. more renadomness with higher temperature
|
|
|
185 |
# for token in model.generate(tokens):
|
186 |
# print(model.detokenize([token]))
|
187 |
# input_ids = tokenizer(*messages)
|
188 |
+
|
189 |
# print(model.generate(tensor([[ 1, 529, 29989, 5205, 29989]])))
|
190 |
# start = time.time()
|
191 |
# NUM_TOKENS=0
|
|
|
202 |
# print(f'Time per token: {(time_generate/NUM_TOKENS)*1000}ms')
|
203 |
|
204 |
|
|
|
|
|
|
|
|
|
205 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
|
207 |
|
208 |
TITLE = "AI Copilot for Diabetes Patients"
|