Update app.py
Browse files
app.py
CHANGED
@@ -56,25 +56,12 @@ retriever = vectordb.as_retriever(
|
|
56 |
search_type="similarity", search_kwargs={"k": 2}
|
57 |
)
|
58 |
|
59 |
-
#from langchain.chains import RetrievalQA
|
60 |
-
from langchain_core.prompts import ChatPromptTemplate
|
61 |
|
62 |
-
from
|
63 |
-
#from langchain import hub
|
64 |
-
from langchain.chains import create_retrieval_chain
|
65 |
|
66 |
-
|
67 |
-
|
68 |
|
69 |
-
from transformers import AutoModelForSeq2SeqLM, BitsAndBytesConfig
|
70 |
-
lll_model = AutoModelForSeq2SeqLM.from_pretrained("unsloth/llama-3-8b-bnb-4bit",low_cpu_mem_usage=True,max_shard_size="1GB")
|
71 |
-
|
72 |
-
#READER_MODEL = "HuggingFaceH4/zephyr-7b-beta"
|
73 |
-
|
74 |
-
#qa = ConversationalRetrievalChain.from_llm(llm=READER_MODEL,retriever=retriever,memory=memory)
|
75 |
-
#qa = RetrievalQA.from_chain_type(llm=READER_MODEL,retriever=retriever)
|
76 |
-
|
77 |
-
#retrieval_qa_chat_prompt = hub.pull("langchain-ai/retrieval-qa-chat")
|
78 |
from langchain_core.messages import SystemMessage
|
79 |
from langchain_core.prompts import HumanMessagePromptTemplate
|
80 |
|
@@ -89,17 +76,7 @@ qa_chat_prompt = ChatPromptTemplate.from_messages(
|
|
89 |
]
|
90 |
)
|
91 |
|
92 |
-
|
93 |
-
lll_model, qa_chat_prompt
|
94 |
-
)
|
95 |
-
retrieval_chain = create_retrieval_chain(retriever, docs_chain)
|
96 |
-
response = retrieval_chain.invoke({"context": "how can I reverse diabetes?"})
|
97 |
-
print(response["answer"])
|
98 |
-
|
99 |
-
|
100 |
-
#result = qa(question)
|
101 |
-
#import gradio as gr
|
102 |
-
#gr.load("lll_model").launch()
|
103 |
|
104 |
-
|
105 |
-
|
|
|
56 |
search_type="similarity", search_kwargs={"k": 2}
|
57 |
)
|
58 |
|
|
|
|
|
59 |
|
60 |
+
from transformers import pipeline
|
|
|
|
|
61 |
|
62 |
+
llm_model = "HuggingFaceH4/zephyr-7b-beta"
|
63 |
+
pipe = pipeline(task="text-generation",llm_model,retriever = retriever)
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
from langchain_core.messages import SystemMessage
|
66 |
from langchain_core.prompts import HumanMessagePromptTemplate
|
67 |
|
|
|
76 |
]
|
77 |
)
|
78 |
|
79 |
+
chain = qa_chat_prompt | pipe
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
+
import gradio as gr
|
82 |
+
gr.load("lll_model").launch()
|