Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,7 @@ from sentence_transformers import SentenceTransformer
|
|
5 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
6 |
import faiss
|
7 |
from langchain.prompts import PromptTemplate
|
|
|
8 |
|
9 |
import time
|
10 |
import torch
|
@@ -24,6 +25,15 @@ dataset = load_dataset("Namitg02/Test", split='train', streaming=False)
|
|
24 |
#Returns a list of dictionaries, each representing a row in the dataset.
|
25 |
print(dataset[1])
|
26 |
length = len(dataset)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
#Itemdetails = dataset.items()
|
29 |
#print(Itemdetails)
|
@@ -35,12 +45,12 @@ embedding_model = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")
|
|
35 |
#doc_func = lambda x: x.text
|
36 |
#dataset = list(map(doc_func, dataset))
|
37 |
|
38 |
-
def embedder(dataset):
|
39 |
-
embeddings = embedding_model.encode(dataset["text"])
|
40 |
-
dataset = dataset.add_column('embeddings', embeddings)
|
41 |
-
return dataset
|
42 |
-
updated_dataset = dataset.map(embedder)
|
43 |
-
dataset['text'][:length]
|
44 |
|
45 |
#print(embeddings)
|
46 |
|
|
|
5 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
6 |
import faiss
|
7 |
from langchain.prompts import PromptTemplate
|
8 |
+
import pandas as pd
|
9 |
|
10 |
import time
|
11 |
import torch
|
|
|
25 |
#Returns a list of dictionaries, each representing a row in the dataset.
|
26 |
print(dataset[1])
|
27 |
length = len(dataset)
|
28 |
+
df = pd.DataFrame(dataset)
|
29 |
+
|
30 |
+
embeddings = embedding_model.encode(dataset["text"])
|
31 |
+
print(embeddings)
|
32 |
+
|
33 |
+
df['embeddings'] = embeddings
|
34 |
+
dataset = Dataset.from_pandas(df)
|
35 |
+
print(dataset[1])
|
36 |
+
|
37 |
|
38 |
#Itemdetails = dataset.items()
|
39 |
#print(Itemdetails)
|
|
|
45 |
#doc_func = lambda x: x.text
|
46 |
#dataset = list(map(doc_func, dataset))
|
47 |
|
48 |
+
#def embedder(dataset):
|
49 |
+
# embeddings = embedding_model.encode(dataset["text"])
|
50 |
+
# dataset = dataset.add_column('embeddings', embeddings)
|
51 |
+
# return dataset
|
52 |
+
#updated_dataset = dataset.map(embedder)
|
53 |
+
#dataset['text'][:length]
|
54 |
|
55 |
#print(embeddings)
|
56 |
|