Namitg02 commited on
Commit
50f7573
·
verified ·
1 Parent(s): f51e056

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -5
app.py CHANGED
@@ -33,7 +33,7 @@ vectordb = Chroma.from_documents(
33
  #pass_input_placeholder = st.empty()
34
 
35
  #from langchain_community.output_parsers.rail_parser import GuardrailsOutputParser
36
- from langchain.prompts import PromptTemplate
37
 
38
  #template = """Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer. Use three sentences maximum. Keep the answer as concise as possible. Always say "thanks for asking!" at the end of the answer.
39
  #{You are a helpful dietician}
@@ -50,16 +50,16 @@ from langchain.prompts import PromptTemplate
50
  #)
51
 
52
  question = "How can I reverse Diabetes?"
53
- print("template")
54
 
55
  retriever = vectordb.as_retriever(
56
  search_type="similarity", search_kwargs={"k": 2}
57
  )
58
 
59
- from langchain.chains import RetrievalQA
60
  from langchain_core.prompts import ChatPromptTemplate
61
 
62
- #from langchain.chains import create_retrieval_chain
63
  from langchain.chains.combine_documents import create_stuff_documents_chain
64
  #from langchain import hub
65
 
@@ -68,7 +68,7 @@ READER_MODEL="HuggingFaceH4/zephyr-7b-beta"
68
  #HuggingFaceH4/zephyr-7b-beta
69
  #READER_MODEL=Ollama(model="meta-llama/Meta-Llama-Guard-2-8B")
70
  #qa = ConversationalRetrievalChain.from_llm(llm=READER_MODEL,retriever=retriever,memory=memory)
71
- qa = RetrievalQA.from_chain_type(llm=READER_MODEL,chain_type="map_reduce",retriever=retriever,verbose=True)
72
 
73
  #retrieval_qa_chat_prompt = hub.pull("langchain-ai/retrieval-qa-chat")
74
 
 
33
  #pass_input_placeholder = st.empty()
34
 
35
  #from langchain_community.output_parsers.rail_parser import GuardrailsOutputParser
36
+ #from langchain.prompts import PromptTemplate
37
 
38
  #template = """Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer. Use three sentences maximum. Keep the answer as concise as possible. Always say "thanks for asking!" at the end of the answer.
39
  #{You are a helpful dietician}
 
50
  #)
51
 
52
  question = "How can I reverse Diabetes?"
53
+ #print("template")
54
 
55
  retriever = vectordb.as_retriever(
56
  search_type="similarity", search_kwargs={"k": 2}
57
  )
58
 
59
+ #from langchain.chains import RetrievalQA
60
  from langchain_core.prompts import ChatPromptTemplate
61
 
62
+ from langchain.chains.retrieval import create_retrieval_chain
63
  from langchain.chains.combine_documents import create_stuff_documents_chain
64
  #from langchain import hub
65
 
 
68
  #HuggingFaceH4/zephyr-7b-beta
69
  #READER_MODEL=Ollama(model="meta-llama/Meta-Llama-Guard-2-8B")
70
  #qa = ConversationalRetrievalChain.from_llm(llm=READER_MODEL,retriever=retriever,memory=memory)
71
+ #qa = RetrievalQA.from_chain_type(llm=READER_MODEL,chain_type="map_reduce",retriever=retriever,verbose=True)
72
 
73
  #retrieval_qa_chat_prompt = hub.pull("langchain-ai/retrieval-qa-chat")
74