Namitg02 commited on
Commit
73c9569
·
verified ·
1 Parent(s): 5c002ad

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +94 -0
app.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datasets import load_dataset
2
+ dataset = load_dataset("Namitg02/Test")
3
+ print(dataset)
4
+
5
+ from langchain.docstore.document import Document as LangchainDocument
6
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
7
+ splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=15,separators=["\n\n", "\n", " ", ""])
8
+ docs = splitter.create_documents(str(dataset))
9
+
10
+
11
+ from langchain_community.embeddings import HuggingFaceEmbeddings
12
+ embedding_model = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
13
+
14
+ from langchain_community.vectorstores import Chroma
15
+ persist_directory = 'docs/chroma/'
16
+
17
+ vectordb = Chroma.from_documents(
18
+ documents=docs,
19
+ embedding=embedding_model,
20
+ persist_directory=persist_directory
21
+ )
22
+
23
+
24
+
25
+ retriever = vectordb.as_retriever(
26
+ search_type="similarity", search_kwargs={"k": 2}
27
+ )
28
+
29
+
30
+ from langchain.prompts import PromptTemplate
31
+ from langchain.chains import ConversationalRetrievalChain
32
+ from langchain.memory import ConversationBufferMemory
33
+
34
+ memory = ConversationBufferMemory(
35
+ memory_key="chat_history",
36
+ return_messages=True
37
+ )
38
+
39
+ from transformers import pipeline
40
+ from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
41
+ from langchain_core.messages import SystemMessage
42
+ from langchain_core.prompts import HumanMessagePromptTemplate
43
+ from langchain_core.prompts import ChatPromptTemplate
44
+ from langchain.prompts import PromptTemplate
45
+
46
+ print("check1")
47
+ question = "How can I reverse Diabetes?"
48
+
49
+
50
+ #template = """Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer. Use three sentences maximum. Keep the answer as concise as possible. Always say "thanks for asking!" at the end of the answer.
51
+ #{context}
52
+ #Question: {question}
53
+ #Helpful Answer:"""
54
+
55
+ #QA_CHAIN_PROMPT = PromptTemplate(input_variables=["context", "question"],template=template)
56
+
57
+ from transformers import AutoTokenizer
58
+ from transformers import AutoModelForCausalLM
59
+
60
+ llm_model = "omi-health/sum-small"
61
+ tokenizer = AutoTokenizer.from_pretrained(llm_model,trust_remote_code=True)
62
+ model = AutoModelForCausalLM.from_pretrained(llm_model,trust_remote_code=True)
63
+ pipe = pipeline(model = llm_model, tokenizer = tokenizer,trust_remote_code=True, task = "text-generation", temperature=0.2)
64
+
65
+ # "microsoft/Phi-3-mini-4k-instruct"
66
+ question = "How can I reverse diabetes?"
67
+ docs1 = retriever.get_relevant_documents(question)
68
+ print(docs1[0].page_content)
69
+ printdocs1[0]['generated_text'][-1]
70
+
71
+ print("check2")
72
+
73
+
74
+ #question = "How can I reverse diabetes?"
75
+ result = qa({"question": question})
76
+ print("result")
77
+ #result['answer']
78
+
79
+ #"question-answering", "conversational"
80
+
81
+ print("check3")
82
+ chain = pipe(question = question,context = "Use the following information to answer the question- docs1[0].page_content.")
83
+
84
+
85
+ print("check3A")
86
+ print(chain)[0]['generated_text'][-1]
87
+ print("check3B")
88
+
89
+ import gradio as gr
90
+ ragdemo = gr.Interface.from_pipeline(chain)
91
+
92
+ print("check4")
93
+ ragdemo.launch()
94
+ print("check5")