Update app.py
Browse files
app.py
CHANGED
@@ -122,12 +122,15 @@ def talk(prompt, history):
|
|
122 |
global historylog
|
123 |
# for user_message, bot_message in history[0:]:
|
124 |
# historylog += f"<s>[INST] {user_message} [/INST] {bot_message} </s>"
|
125 |
-
historylog += f"
|
126 |
print("history log")
|
127 |
print(str(historylog))
|
128 |
print("history log printed")
|
129 |
-
|
130 |
-
|
|
|
|
|
|
|
131 |
|
132 |
# from huggingface_hub import HfApi
|
133 |
# api = HfApi()
|
@@ -138,36 +141,18 @@ def talk(prompt, history):
|
|
138 |
# repo_type="space"
|
139 |
# )
|
140 |
|
141 |
-
print("upload section passed")
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
|
147 |
for i in range(len(response)):
|
148 |
time.sleep(0.05)
|
149 |
yield response[: i+1]
|
150 |
-
|
151 |
-
# return(stream['choices'][0]['message']['content'])
|
152 |
-
|
153 |
-
# text = ""
|
154 |
-
# for output in stream:
|
155 |
-
# text += output['choices'][0]['message']['content']
|
156 |
-
# print(f"{output}")
|
157 |
-
# print("check3H")
|
158 |
-
# print(text)
|
159 |
-
# yield text
|
160 |
-
|
161 |
-
|
162 |
|
163 |
# calling the model to generate response based on message/ input
|
164 |
# do_sample if set to True uses strategies to select the next token from the probability distribution over the entire vocabulary
|
165 |
# temperature controls randomness. more renadomness with higher temperature
|
166 |
# only the tokens comprising the top_p probability mass are considered for responses
|
167 |
# This output is a data structure containing all the information returned by generate(), but that can also be used as tuple or dictionary.
|
168 |
-
|
169 |
|
170 |
-
|
171 |
TITLE = "AI Copilot for Diabetes Patients"
|
172 |
|
173 |
DESCRIPTION = "I provide answers to concerns related to Diabetes"
|
|
|
122 |
global historylog
|
123 |
# for user_message, bot_message in history[0:]:
|
124 |
# historylog += f"<s>[INST] {user_message} [/INST] {bot_message} </s>"
|
125 |
+
historylog += f"{prompt} \n {response} "
|
126 |
print("history log")
|
127 |
print(str(historylog))
|
128 |
print("history log printed")
|
129 |
+
data = open('file.txt','w+')
|
130 |
+
data.write(str(historylog))
|
131 |
+
print(data.read())
|
132 |
+
data.close()
|
133 |
+
|
134 |
|
135 |
# from huggingface_hub import HfApi
|
136 |
# api = HfApi()
|
|
|
141 |
# repo_type="space"
|
142 |
# )
|
143 |
|
144 |
+
print("upload section passed")
|
|
|
|
|
|
|
|
|
145 |
|
146 |
for i in range(len(response)):
|
147 |
time.sleep(0.05)
|
148 |
yield response[: i+1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
|
150 |
# calling the model to generate response based on message/ input
|
151 |
# do_sample if set to True uses strategies to select the next token from the probability distribution over the entire vocabulary
|
152 |
# temperature controls randomness. more renadomness with higher temperature
|
153 |
# only the tokens comprising the top_p probability mass are considered for responses
|
154 |
# This output is a data structure containing all the information returned by generate(), but that can also be used as tuple or dictionary.
|
|
|
155 |
|
|
|
156 |
TITLE = "AI Copilot for Diabetes Patients"
|
157 |
|
158 |
DESCRIPTION = "I provide answers to concerns related to Diabetes"
|