Update app.py
Browse files
app.py
CHANGED
@@ -21,6 +21,21 @@ tokenizer = AutoTokenizer.from_pretrained(llm_model)
|
|
21 |
|
22 |
#import numpy as np
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
from torch.utils.data import Dataset, IterableDataset
|
25 |
|
26 |
class MyIterableDataset(IterableDataset):
|
@@ -42,8 +57,9 @@ class MapStyleDataset(Dataset):
|
|
42 |
def __getitem__(self, idx):
|
43 |
return self.data[idx]
|
44 |
|
|
|
45 |
# Create an iterable
|
46 |
-
iterable = "Namitg02/Test"
|
47 |
|
48 |
# Convert the iterable to a MapStyle dataset
|
49 |
map_style_dataset = MapStyleDataset(iterable)
|
@@ -51,16 +67,6 @@ map_style_dataset = MapStyleDataset(iterable)
|
|
51 |
# Create a DataLoader for the MapStyle dataset
|
52 |
data_loader = torch.utils.data.DataLoader(map_style_dataset, batch_size=2)
|
53 |
|
54 |
-
def is_iterable_dataset(map_style_dataset):
|
55 |
-
return isinstance(map_style_dataset, torch.utils.data.IterableDataset)
|
56 |
-
|
57 |
-
def is_map_style_dataset(map_style_dataset):
|
58 |
-
return isinstance(map_style_dataset, torch.utils.data.Dataset)
|
59 |
-
|
60 |
-
if is_iterable_dataset(map_style_dataset):
|
61 |
-
print("The dataset is iterable-style.")
|
62 |
-
else:
|
63 |
-
print("The dataset is map-style.")
|
64 |
|
65 |
|
66 |
|
|
|
21 |
|
22 |
#import numpy as np
|
23 |
|
24 |
+
datasetiter = load_dataset("Namitg02/Test", split='train', streaming=False)
|
25 |
+
|
26 |
+
def is_iterable_dataset(datasetiter):
|
27 |
+
return isinstance(datasetiter, torch.utils.data.IterableDataset)
|
28 |
+
|
29 |
+
def is_map_style_dataset(datasetiter):
|
30 |
+
return isinstance(datasetiter, torch.utils.data.Dataset)
|
31 |
+
|
32 |
+
if is_iterable_dataset(datasetiter):
|
33 |
+
print("The dataset is iterable-style.")
|
34 |
+
else:
|
35 |
+
print("The dataset is map-style.")
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
from torch.utils.data import Dataset, IterableDataset
|
40 |
|
41 |
class MyIterableDataset(IterableDataset):
|
|
|
57 |
def __getitem__(self, idx):
|
58 |
return self.data[idx]
|
59 |
|
60 |
+
|
61 |
# Create an iterable
|
62 |
+
#iterable = "Namitg02/Test"
|
63 |
|
64 |
# Convert the iterable to a MapStyle dataset
|
65 |
map_style_dataset = MapStyleDataset(iterable)
|
|
|
67 |
# Create a DataLoader for the MapStyle dataset
|
68 |
data_loader = torch.utils.data.DataLoader(map_style_dataset, batch_size=2)
|
69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
|
72 |
|