Update app.py
Browse files
app.py
CHANGED
|
@@ -3,7 +3,7 @@ from langchain.docstore.document import Document as LangchainDocument
|
|
| 3 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 4 |
from sentence_transformers import SentenceTransformer
|
| 5 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 6 |
-
from langchain_community.vectorstores import
|
| 7 |
from langchain.prompts import PromptTemplate
|
| 8 |
#from langchain.chains import ConversationalRetrievalChain
|
| 9 |
#from transformers import pipeline
|
|
@@ -44,7 +44,7 @@ data = dataset["train"]
|
|
| 44 |
print(data)
|
| 45 |
d = 384 # vectors dimension
|
| 46 |
m = 32 # hnsw parameter. Higher is more accurate but takes more time to index (default is 32, 128 should be ok)
|
| 47 |
-
index =
|
| 48 |
data = data.add_faiss_index("embeddings", custom_index=index)
|
| 49 |
# adds an index column that for the embeddings
|
| 50 |
|
|
|
|
| 3 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 4 |
from sentence_transformers import SentenceTransformer
|
| 5 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 6 |
+
from langchain_community.vectorstores import faiss
|
| 7 |
from langchain.prompts import PromptTemplate
|
| 8 |
#from langchain.chains import ConversationalRetrievalChain
|
| 9 |
#from transformers import pipeline
|
|
|
|
| 44 |
print(data)
|
| 45 |
d = 384 # vectors dimension
|
| 46 |
m = 32 # hnsw parameter. Higher is more accurate but takes more time to index (default is 32, 128 should be ok)
|
| 47 |
+
index = faiss.IndexHNSWFlat(d, m, faiss.METRIC_INNER_PRODUCT)
|
| 48 |
data = data.add_faiss_index("embeddings", custom_index=index)
|
| 49 |
# adds an index column that for the embeddings
|
| 50 |
|