Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,17 @@
|
|
1 |
from datasets import load_dataset
|
2 |
from datasets import Dataset
|
3 |
-
#from langchain.docstore.document import Document as LangchainDocument
|
4 |
-
# from langchain.memory import ConversationBufferMemory
|
5 |
from sentence_transformers import SentenceTransformer
|
6 |
import faiss
|
7 |
import time
|
8 |
#import torch
|
9 |
import pandas as pd
|
10 |
|
11 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
12 |
from transformers import TextIteratorStreamer
|
13 |
from threading import Thread
|
14 |
-
|
15 |
|
16 |
-
#from huggingface_hub import InferenceClient
|
17 |
from huggingface_hub import Repository, upload_file
|
18 |
import os
|
19 |
|
@@ -26,16 +24,6 @@ historylog = [{
|
|
26 |
"Output": ''
|
27 |
}]
|
28 |
|
29 |
-
llm_model = "TinyLlama/TinyLlama-1.1B-Chat-v0.6"
|
30 |
-
|
31 |
-
|
32 |
-
# TheBloke/Llama-2-7B-Chat-GGML , TinyLlama/TinyLlama-1.1B-Chat-v1.0 , microsoft/Phi-3-mini-4k-instruct, health360/Healix-1.1B-V1-Chat-dDPO
|
33 |
-
# TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF and tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf not working
|
34 |
-
|
35 |
-
model = AutoModelForCausalLM.from_pretrained(llm_model)
|
36 |
-
tokenizer = AutoTokenizer.from_pretrained(llm_model)
|
37 |
-
#initiate model and tokenizer
|
38 |
-
|
39 |
data = load_dataset("Namitg02/Test", split='train', streaming=False)
|
40 |
#Returns a list of dictionaries, each representing a row in the dataset.
|
41 |
length = len(data)
|
@@ -49,7 +37,7 @@ index = faiss.IndexFlatL2(embedding_dim)
|
|
49 |
data.add_faiss_index("embeddings", custom_index=index)
|
50 |
# adds an index column for the embeddings
|
51 |
|
52 |
-
print("
|
53 |
#question = "How can I reverse Diabetes?"
|
54 |
|
55 |
SYS_PROMPT = """You are an assistant for answering questions.
|
@@ -57,18 +45,25 @@ You are given the extracted parts of documents and a question. Provide a convers
|
|
57 |
If you don't know the answer, just say "I do not know." Don't make up an answer."""
|
58 |
# Provides context of how to answer the question
|
59 |
|
|
|
|
|
|
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
# memory = ConversationBufferMemory(return_messages=True)
|
64 |
-
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
#
|
|
|
|
|
|
|
|
|
|
|
71 |
|
|
|
72 |
|
73 |
def search(query: str, k: int = 2 ):
|
74 |
"""a function that embeds a new query and returns the most probable results"""
|
@@ -82,8 +77,6 @@ def search(query: str, k: int = 2 ):
|
|
82 |
# called by talk function that passes prompt
|
83 |
|
84 |
#print(scores, retrieved_examples)
|
85 |
-
print("check2A")
|
86 |
-
|
87 |
|
88 |
def format_prompt(prompt,retrieved_documents,k):
|
89 |
"""using the retrieved documents we will prompt the model to generate our responses"""
|
@@ -94,109 +87,114 @@ def format_prompt(prompt,retrieved_documents,k):
|
|
94 |
|
95 |
# Called by talk function to add retrieved documents to the prompt. Keeps adding text of retrieved documents to string taht are retreived
|
96 |
|
97 |
-
print("check3")
|
98 |
-
|
99 |
def talk(prompt, history):
|
100 |
k = 2 # number of retrieved documents
|
101 |
scores , retrieved_documents = search(prompt, k) # get retrival scores and examples in dictionary format based on the prompt passed
|
102 |
print(retrieved_documents.keys())
|
|
|
103 |
formatted_prompt = format_prompt(prompt,retrieved_documents,k) # create a new prompt using the retrieved documents
|
|
|
104 |
print(retrieved_documents['0'])
|
105 |
print(formatted_prompt)
|
106 |
formatted_prompt = formatted_prompt[:600] # to avoid memory issue
|
107 |
-
# print(retrieved_documents['0'][1]
|
108 |
-
# print(retrieved_documents['0'][2]
|
109 |
print(formatted_prompt)
|
110 |
messages = [{"role":"system","content":SYS_PROMPT},{"role":"user","content":formatted_prompt}]
|
111 |
# binding the system context and new prompt for LLM
|
112 |
# the chat template structure should be based on text generation model format
|
113 |
-
print("
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
return_tensors="pt"
|
118 |
-
).to(model.device)
|
119 |
-
# tell the model to generate
|
120 |
-
# add_generation_prompt argument tells the template to add tokens that indicate the start of a bot response
|
121 |
-
print("check3C")
|
122 |
-
outputs = model.generate(
|
123 |
-
input_ids,
|
124 |
-
max_new_tokens=300,
|
125 |
-
eos_token_id=terminators,
|
126 |
-
do_sample=True,
|
127 |
-
temperature=0.4,
|
128 |
-
top_p=0.95,
|
129 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
# calling the model to generate response based on message/ input
|
131 |
# do_sample if set to True uses strategies to select the next token from the probability distribution over the entire vocabulary
|
132 |
# temperature controls randomness. more renadomness with higher temperature
|
133 |
# only the tokens comprising the top_p probability mass are considered for responses
|
134 |
# This output is a data structure containing all the information returned by generate(), but that can also be used as tuple or dictionary.
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
# stores print-ready text in a queue, to be used by a downstream application as an iterator. removes specail tokens in generated text.
|
140 |
-
# timeout for text queue. tokenizer for decoding tokens
|
141 |
-
# called by generate_kwargs
|
142 |
-
print("check3E")
|
143 |
-
generate_kwargs = dict(
|
144 |
-
input_ids= input_ids,
|
145 |
-
streamer=streamer,
|
146 |
-
max_new_tokens= 200,
|
147 |
-
do_sample=True,
|
148 |
-
top_p=0.95,
|
149 |
-
temperature=0.4,
|
150 |
-
eos_token_id=terminators,
|
151 |
-
)
|
152 |
-
# send additional parameters to model for generation
|
153 |
-
print("check3F")
|
154 |
-
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
155 |
# to process multiple instances
|
156 |
-
|
|
|
157 |
# start a thread
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
|
166 |
pd.options.display.max_colwidth = 800
|
167 |
-
|
168 |
-
outputstring = ''.join(outputs)
|
169 |
-
|
170 |
-
global historylog
|
171 |
-
historynew = {
|
172 |
-
"Prompt": prompt,
|
173 |
-
"Output": outputstring
|
174 |
-
}
|
175 |
-
historylog.append(historynew)
|
176 |
-
return historylog
|
177 |
-
print(historylog)
|
178 |
-
|
179 |
-
# history.update({prompt: outputstring})
|
180 |
-
# print(history)
|
181 |
-
#print(memory_string2)
|
182 |
-
#with open(logfile, 'a', encoding='utf-8') as f:
|
183 |
-
# f.write(memory_string2)
|
184 |
-
# f.write('\n')
|
185 |
-
#f.close()
|
186 |
-
#print(logfile)
|
187 |
-
#logfile.push_to_hub("Namitg02/",token = HF_TOKEN)
|
188 |
-
#memory_panda = pd.DataFrame()
|
189 |
-
#if len(memory_panda) == 0:
|
190 |
-
# memory_panda = pd.DataFrame(memory_string)
|
191 |
-
#else:
|
192 |
-
# memory_panda = memory_panda.append(memory_string, ignore_index=True)
|
193 |
-
#print(memory_panda.iloc[[0]])
|
194 |
|
195 |
-
#memory_panda.loc[len(memory_panda.index)] = ['prompt', outputstring]
|
196 |
-
#print(memory_panda.iloc[[1]])
|
197 |
-
#Logfile = Dataset.from_pandas(memory_panda)
|
198 |
-
#Logfile.push_to_hub("Namitg02/Logfile",token = HF_TOKEN)
|
199 |
-
|
200 |
|
201 |
TITLE = "AI Copilot for Diabetes Patients"
|
202 |
|
@@ -218,12 +216,11 @@ demo = gr.ChatInterface(
|
|
218 |
examples=[["what is Diabetes? "]],
|
219 |
title=TITLE,
|
220 |
description=DESCRIPTION,
|
221 |
-
|
222 |
)
|
223 |
# launch chatbot and calls the talk function which in turn calls other functions
|
224 |
-
print("
|
225 |
-
print(historylog)
|
226 |
-
memory_panda = pd.DataFrame(historylog)
|
227 |
-
Logfile = Dataset.from_pandas(memory_panda)
|
228 |
-
Logfile.push_to_hub("Namitg02/Logfile",token = HF_TOKEN)
|
229 |
demo.launch()
|
|
|
1 |
from datasets import load_dataset
|
2 |
from datasets import Dataset
|
|
|
|
|
3 |
from sentence_transformers import SentenceTransformer
|
4 |
import faiss
|
5 |
import time
|
6 |
#import torch
|
7 |
import pandas as pd
|
8 |
|
9 |
+
from transformers import AutoTokenizer, GenerationConfig #, AutoModelForCausalLM
|
10 |
+
#from transformers import AutoModelForCausalLM, AutoModel
|
11 |
from transformers import TextIteratorStreamer
|
12 |
from threading import Thread
|
13 |
+
from ctransformers import AutoModelForCausalLM, AutoConfig, Config #, AutoTokenizer
|
14 |
|
|
|
15 |
from huggingface_hub import Repository, upload_file
|
16 |
import os
|
17 |
|
|
|
24 |
"Output": ''
|
25 |
}]
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
data = load_dataset("Namitg02/Test", split='train', streaming=False)
|
28 |
#Returns a list of dictionaries, each representing a row in the dataset.
|
29 |
length = len(data)
|
|
|
37 |
data.add_faiss_index("embeddings", custom_index=index)
|
38 |
# adds an index column for the embeddings
|
39 |
|
40 |
+
print("check1")
|
41 |
#question = "How can I reverse Diabetes?"
|
42 |
|
43 |
SYS_PROMPT = """You are an assistant for answering questions.
|
|
|
45 |
If you don't know the answer, just say "I do not know." Don't make up an answer."""
|
46 |
# Provides context of how to answer the question
|
47 |
|
48 |
+
llm_model = "TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF"
|
49 |
+
# TheBloke/Llama-2-7B-Chat-GGML , TinyLlama/TinyLlama-1.1B-Chat-v1.0 , microsoft/Phi-3-mini-4k-instruct, health360/Healix-1.1B-V1-Chat-dDPO
|
50 |
+
# TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF and tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf not working, TinyLlama/TinyLlama-1.1B-Chat-v0.6, andrijdavid/TinyLlama-1.1B-Chat-v1.0-GGUF"
|
51 |
|
52 |
+
tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0")
|
53 |
+
#initiate model and tokenizer
|
|
|
|
|
54 |
|
55 |
+
generation_config = AutoConfig.from_pretrained(
|
56 |
+
"TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF",
|
57 |
+
max_new_tokens= 300,
|
58 |
+
# do_sample=True,
|
59 |
+
# stream = streamer,
|
60 |
+
top_p=0.95,
|
61 |
+
temperature=0.4
|
62 |
+
# eos_token_id=terminators
|
63 |
+
)
|
64 |
+
# send additional parameters to model for generation
|
65 |
|
66 |
+
model = AutoModelForCausalLM.from_pretrained(llm_model, model_file = "tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf", model_type="llama", gpu_layers=0, config = generation_config)
|
67 |
|
68 |
def search(query: str, k: int = 2 ):
|
69 |
"""a function that embeds a new query and returns the most probable results"""
|
|
|
77 |
# called by talk function that passes prompt
|
78 |
|
79 |
#print(scores, retrieved_examples)
|
|
|
|
|
80 |
|
81 |
def format_prompt(prompt,retrieved_documents,k):
|
82 |
"""using the retrieved documents we will prompt the model to generate our responses"""
|
|
|
87 |
|
88 |
# Called by talk function to add retrieved documents to the prompt. Keeps adding text of retrieved documents to string taht are retreived
|
89 |
|
|
|
|
|
90 |
def talk(prompt, history):
|
91 |
k = 2 # number of retrieved documents
|
92 |
scores , retrieved_documents = search(prompt, k) # get retrival scores and examples in dictionary format based on the prompt passed
|
93 |
print(retrieved_documents.keys())
|
94 |
+
print("check4")
|
95 |
formatted_prompt = format_prompt(prompt,retrieved_documents,k) # create a new prompt using the retrieved documents
|
96 |
+
print("check5")
|
97 |
print(retrieved_documents['0'])
|
98 |
print(formatted_prompt)
|
99 |
formatted_prompt = formatted_prompt[:600] # to avoid memory issue
|
|
|
|
|
100 |
print(formatted_prompt)
|
101 |
messages = [{"role":"system","content":SYS_PROMPT},{"role":"user","content":formatted_prompt}]
|
102 |
# binding the system context and new prompt for LLM
|
103 |
# the chat template structure should be based on text generation model format
|
104 |
+
print("check6")
|
105 |
+
|
106 |
+
streamer = TextIteratorStreamer(
|
107 |
+
tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
)
|
109 |
+
# stores print-ready text in a queue, to be used by a downstream application as an iterator. removes special tokens in generated text.
|
110 |
+
# timeout for text queue. tokenizer for decoding tokens
|
111 |
+
# called by generate_kwargs
|
112 |
+
|
113 |
+
terminators = [
|
114 |
+
tokenizer.eos_token_id, # End-of-Sequence Token that indicates where the model should consider the text sequence to be complete
|
115 |
+
tokenizer.convert_tokens_to_ids("<|eot_id|>") # Converts a token strings in a single/ sequence of integer id using the vocabulary
|
116 |
+
]
|
117 |
+
# indicates the end of a sequence
|
118 |
+
|
119 |
+
# input_ids = tokenizer.apply_chat_template(
|
120 |
+
# "hello",
|
121 |
+
# add_generation_prompt=True,
|
122 |
+
# return_tensors="pt"
|
123 |
+
# )
|
124 |
+
# preparing tokens for model input
|
125 |
+
# add_generation_prompt argument tells the template to add tokens that indicate the start of a bot response
|
126 |
+
# print(input_ids)
|
127 |
+
# print("check7")
|
128 |
+
# print(input_ids.dtype)
|
129 |
+
|
130 |
+
# generate_kwargs = dict(
|
131 |
+
# tokens= input_ids) #,
|
132 |
+
# streamer=streamer,
|
133 |
+
# do_sample=True,
|
134 |
+
# eos_token_id=terminators,
|
135 |
+
# )
|
136 |
+
|
137 |
+
# outputs = model.generate(
|
138 |
+
# )
|
139 |
+
# print(outputs)
|
140 |
# calling the model to generate response based on message/ input
|
141 |
# do_sample if set to True uses strategies to select the next token from the probability distribution over the entire vocabulary
|
142 |
# temperature controls randomness. more renadomness with higher temperature
|
143 |
# only the tokens comprising the top_p probability mass are considered for responses
|
144 |
# This output is a data structure containing all the information returned by generate(), but that can also be used as tuple or dictionary.
|
145 |
+
#
|
146 |
+
|
147 |
+
# print("check10")
|
148 |
+
# t = Thread(target=model.generate, kwargs=generate_kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
# to process multiple instances
|
150 |
+
# t.start()
|
151 |
+
# print("check11")
|
152 |
# start a thread
|
153 |
+
outputs = []
|
154 |
+
input_ids = llm.tokenize(*messages)
|
155 |
+
|
156 |
+
start = time.time()
|
157 |
+
NUM_TOKENS=0
|
158 |
+
print('-'*4+'Start Generation'+'-'*4)
|
159 |
+
for token in model.generate(input_ids):
|
160 |
+
print(model.detokenize(input_ids), end='', flush=True)
|
161 |
+
NUM_TOKENS+=1
|
162 |
+
time_generate = time.time() - start
|
163 |
+
print('\n')
|
164 |
+
print('-'*4+'End Generation'+'-'*4)
|
165 |
+
print(f'Num of generated tokens: {NUM_TOKENS}')
|
166 |
+
print(f'Time for complete generation: {time_generate}s')
|
167 |
+
print(f'Tokens per secound: {NUM_TOKENS/time_generate}')
|
168 |
+
print(f'Time per token: {(time_generate/NUM_TOKENS)*1000}ms')
|
169 |
+
|
170 |
+
|
171 |
+
#outputtokens = model.generate(input_ids)
|
172 |
+
print("check9")
|
173 |
+
#print(outputtokens)
|
174 |
+
|
175 |
+
#outputs = model.detokenize(outputtokens, decode = True)
|
176 |
+
#print(outputs)
|
177 |
+
# for token in model.generate(input_ids):
|
178 |
+
# print(model.detokenize(token))
|
179 |
+
# outputs.append(model.detokenize(token))
|
180 |
+
# output = model.detokenize(token)
|
181 |
+
# print(outputs)
|
182 |
+
# yield "".join(outputs)
|
183 |
+
# print("check12")
|
184 |
|
185 |
pd.options.display.max_colwidth = 800
|
186 |
+
print("check13")
|
187 |
+
# outputstring = ''.join(outputs)
|
188 |
+
|
189 |
+
# global historylog
|
190 |
+
# historynew = {
|
191 |
+
# "Prompt": prompt,
|
192 |
+
# "Output": outputstring
|
193 |
+
# }
|
194 |
+
# historylog.append(historynew)
|
195 |
+
# return historylog
|
196 |
+
# print(historylog)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
|
|
|
|
|
|
|
|
|
|
|
198 |
|
199 |
TITLE = "AI Copilot for Diabetes Patients"
|
200 |
|
|
|
216 |
examples=[["what is Diabetes? "]],
|
217 |
title=TITLE,
|
218 |
description=DESCRIPTION,
|
|
|
219 |
)
|
220 |
# launch chatbot and calls the talk function which in turn calls other functions
|
221 |
+
print("check14")
|
222 |
+
#print(historylog)
|
223 |
+
#memory_panda = pd.DataFrame(historylog)
|
224 |
+
#Logfile = Dataset.from_pandas(memory_panda)
|
225 |
+
#Logfile.push_to_hub("Namitg02/Logfile",token = HF_TOKEN)
|
226 |
demo.launch()
|