Update app.py
Browse files
app.py
CHANGED
@@ -4,8 +4,8 @@ print(data)
|
|
4 |
|
5 |
from langchain.docstore.document import Document as LangchainDocument
|
6 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
-
splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=15,separators=["\n\n", "\n", " ", ""])
|
8 |
-
docs = splitter.create_documents(str(dataset))
|
9 |
|
10 |
from sentence_transformers import SentenceTransformer
|
11 |
#from langchain_community.embeddings import HuggingFaceEmbeddings
|
@@ -16,17 +16,17 @@ data = data.add_faiss_index("embeddings") # column name that has the embeddings
|
|
16 |
from langchain_community.vectorstores import Chroma
|
17 |
persist_directory = 'docs/chroma/'
|
18 |
|
19 |
-
vectordb = Chroma.from_documents(
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
)
|
24 |
|
25 |
|
26 |
|
27 |
-
retriever = vectordb.as_retriever(
|
28 |
-
search_type="similarity", search_kwargs={"k": 2}
|
29 |
-
)
|
30 |
|
31 |
|
32 |
from langchain.prompts import PromptTemplate
|
|
|
4 |
|
5 |
from langchain.docstore.document import Document as LangchainDocument
|
6 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
+
#splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=15,separators=["\n\n", "\n", " ", ""])
|
8 |
+
#docs = splitter.create_documents(str(dataset))
|
9 |
|
10 |
from sentence_transformers import SentenceTransformer
|
11 |
#from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
|
16 |
from langchain_community.vectorstores import Chroma
|
17 |
persist_directory = 'docs/chroma/'
|
18 |
|
19 |
+
#vectordb = Chroma.from_documents(
|
20 |
+
# documents=docs,
|
21 |
+
# embedding=embedding_model,
|
22 |
+
# persist_directory=persist_directory
|
23 |
+
#)
|
24 |
|
25 |
|
26 |
|
27 |
+
#retriever = vectordb.as_retriever(
|
28 |
+
# search_type="similarity", search_kwargs={"k": 2}
|
29 |
+
#)
|
30 |
|
31 |
|
32 |
from langchain.prompts import PromptTemplate
|