Namitg02 commited on
Commit
c71423e
·
verified ·
1 Parent(s): 1d3d875

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -10
app.py CHANGED
@@ -4,8 +4,8 @@ print(data)
4
 
5
  from langchain.docstore.document import Document as LangchainDocument
6
  from langchain.text_splitter import RecursiveCharacterTextSplitter
7
- splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=15,separators=["\n\n", "\n", " ", ""])
8
- docs = splitter.create_documents(str(dataset))
9
 
10
  from sentence_transformers import SentenceTransformer
11
  #from langchain_community.embeddings import HuggingFaceEmbeddings
@@ -16,17 +16,17 @@ data = data.add_faiss_index("embeddings") # column name that has the embeddings
16
  from langchain_community.vectorstores import Chroma
17
  persist_directory = 'docs/chroma/'
18
 
19
- vectordb = Chroma.from_documents(
20
- documents=docs,
21
- embedding=embedding_model,
22
- persist_directory=persist_directory
23
- )
24
 
25
 
26
 
27
- retriever = vectordb.as_retriever(
28
- search_type="similarity", search_kwargs={"k": 2}
29
- )
30
 
31
 
32
  from langchain.prompts import PromptTemplate
 
4
 
5
  from langchain.docstore.document import Document as LangchainDocument
6
  from langchain.text_splitter import RecursiveCharacterTextSplitter
7
+ #splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=15,separators=["\n\n", "\n", " ", ""])
8
+ #docs = splitter.create_documents(str(dataset))
9
 
10
  from sentence_transformers import SentenceTransformer
11
  #from langchain_community.embeddings import HuggingFaceEmbeddings
 
16
  from langchain_community.vectorstores import Chroma
17
  persist_directory = 'docs/chroma/'
18
 
19
+ #vectordb = Chroma.from_documents(
20
+ # documents=docs,
21
+ # embedding=embedding_model,
22
+ # persist_directory=persist_directory
23
+ #)
24
 
25
 
26
 
27
+ #retriever = vectordb.as_retriever(
28
+ # search_type="similarity", search_kwargs={"k": 2}
29
+ #)
30
 
31
 
32
  from langchain.prompts import PromptTemplate