Update app.py
Browse files
app.py
CHANGED
@@ -1,70 +1,68 @@
|
|
1 |
from datasets import load_dataset
|
2 |
from datasets import Dataset
|
3 |
-
from langchain.docstore.document import Document as LangchainDocument
|
|
|
4 |
from sentence_transformers import SentenceTransformer
|
5 |
import faiss
|
6 |
-
import pandas as pd
|
7 |
import time
|
8 |
-
import torch
|
|
|
9 |
|
10 |
-
from transformers import AutoTokenizer
|
11 |
-
from transformers import AutoModelForCausalLM
|
12 |
from transformers import TextIteratorStreamer
|
13 |
from threading import Thread
|
|
|
|
|
|
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
|
19 |
-
dataset = load_dataset("Namitg02/Test", split='train', streaming=False)
|
20 |
-
#dataset = load_dataset("epfl-llm/guidelines", split='train')
|
21 |
-
#Returns a list of dictionaries, each representing a row in the dataset.
|
22 |
-
length = len(dataset)
|
23 |
|
24 |
-
|
25 |
-
#
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
#
|
29 |
-
|
30 |
-
df['embeddings'] = df['text'].apply(lambda x: embedding_model.encode(x))
|
31 |
-
# add_embeddings as a new column
|
32 |
-
|
33 |
-
print("check1a")
|
34 |
-
print(df.iloc[[1]])
|
35 |
-
dataset = Dataset.from_pandas(df)
|
36 |
-
print("check1b")
|
37 |
|
38 |
-
|
|
|
|
|
39 |
|
40 |
-
|
|
|
|
|
41 |
|
|
|
42 |
embedding_dim = embedding_model.get_sentence_embedding_dimension()
|
43 |
# Returns dimensions of embedidng
|
44 |
-
data = dataset
|
45 |
|
46 |
-
|
47 |
-
d = 384 # vectors dimension
|
48 |
-
m = 32 # hnsw parameter. Higher is more accurate but takes more time to index (default is 32, 128 should be ok)
|
49 |
-
#index = faiss.IndexHNSWFlat(d, m)
|
50 |
index = faiss.IndexFlatL2(embedding_dim)
|
51 |
data.add_faiss_index("embeddings", custom_index=index)
|
52 |
-
#data.add_faiss_index("embeddings")
|
53 |
# adds an index column for the embeddings
|
54 |
|
55 |
print("check1d")
|
56 |
#question = "How can I reverse Diabetes?"
|
57 |
|
58 |
SYS_PROMPT = """You are an assistant for answering questions.
|
59 |
-
You are given the extracted parts of
|
60 |
If you don't know the answer, just say "I do not know." Don't make up an answer."""
|
61 |
# Provides context of how to answer the question
|
62 |
|
|
|
63 |
print("check2")
|
64 |
|
|
|
65 |
|
66 |
-
model = AutoModelForCausalLM.from_pretrained(llm_model)
|
67 |
-
# Initializing the text generation model
|
68 |
|
69 |
terminators = [
|
70 |
tokenizer.eos_token_id, # End-of-Sequence Token that indicates where the model should consider the text sequence to be complete
|
@@ -73,7 +71,7 @@ terminators = [
|
|
73 |
# indicates the end of a sequence
|
74 |
|
75 |
|
76 |
-
def search(query: str, k: int =
|
77 |
"""a function that embeds a new query and returns the most probable results"""
|
78 |
embedded_query = embedding_model.encode(query) # create embedding of a new query
|
79 |
scores, retrieved_examples = data.get_nearest_examples( # retrieve results
|
@@ -89,26 +87,29 @@ print("check2A")
|
|
89 |
|
90 |
|
91 |
def format_prompt(prompt,retrieved_documents,k):
|
92 |
-
"""using the retrieved documents we will prompt the model to generate our responses"""
|
93 |
PROMPT = f"Question:{prompt}\nContext:"
|
94 |
for idx in range(k) :
|
95 |
-
PROMPT+= f"{retrieved_documents['
|
96 |
return PROMPT
|
97 |
|
98 |
# Called by talk function to add retrieved documents to the prompt. Keeps adding text of retrieved documents to string taht are retreived
|
99 |
|
100 |
print("check3")
|
101 |
-
#print(PROMPT)
|
102 |
-
|
103 |
-
print("check3A")
|
104 |
-
|
105 |
|
106 |
-
def talk(prompt,history):
|
107 |
-
k =
|
108 |
scores , retrieved_documents = search(prompt, k) # get retrival scores and examples in dictionary format based on the prompt passed
|
|
|
109 |
formatted_prompt = format_prompt(prompt,retrieved_documents,k) # create a new prompt using the retrieved documents
|
110 |
-
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
# the chat template structure should be based on text generation model format
|
113 |
print("check3B")
|
114 |
input_ids = tokenizer.apply_chat_template(
|
@@ -124,8 +125,8 @@ def talk(prompt,history):
|
|
124 |
max_new_tokens=300,
|
125 |
eos_token_id=terminators,
|
126 |
do_sample=True,
|
127 |
-
temperature=0.
|
128 |
-
top_p=0.
|
129 |
)
|
130 |
# calling the model to generate response based on message/ input
|
131 |
# do_sample if set to True uses strategies to select the next token from the probability distribution over the entire vocabulary
|
@@ -143,10 +144,10 @@ def talk(prompt,history):
|
|
143 |
generate_kwargs = dict(
|
144 |
input_ids= input_ids,
|
145 |
streamer=streamer,
|
146 |
-
max_new_tokens=
|
147 |
do_sample=True,
|
148 |
top_p=0.95,
|
149 |
-
temperature=0.
|
150 |
eos_token_id=terminators,
|
151 |
)
|
152 |
# send additional parameters to model for generation
|
@@ -163,10 +164,44 @@ def talk(prompt,history):
|
|
163 |
yield "".join(outputs)
|
164 |
print("check3H")
|
165 |
|
|
|
166 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
TITLE = "AI Copilot for Diabetes Patients"
|
168 |
|
169 |
-
DESCRIPTION = ""
|
170 |
|
171 |
import gradio as gr
|
172 |
# Design chatbot
|
@@ -188,4 +223,8 @@ demo = gr.ChatInterface(
|
|
188 |
)
|
189 |
# launch chatbot and calls the talk function which in turn calls other functions
|
190 |
print("check3I")
|
|
|
|
|
|
|
|
|
191 |
demo.launch()
|
|
|
1 |
from datasets import load_dataset
|
2 |
from datasets import Dataset
|
3 |
+
#from langchain.docstore.document import Document as LangchainDocument
|
4 |
+
# from langchain.memory import ConversationBufferMemory
|
5 |
from sentence_transformers import SentenceTransformer
|
6 |
import faiss
|
|
|
7 |
import time
|
8 |
+
#import torch
|
9 |
+
import pandas as pd
|
10 |
|
11 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
12 |
+
#from transformers import AutoModelForCausalLM, AutoModel
|
13 |
from transformers import TextIteratorStreamer
|
14 |
from threading import Thread
|
15 |
+
#from transformers import LlamaForCausalLM, LlamaTokenizer
|
16 |
+
#git lfs install
|
17 |
+
#from ctransformers import AutoModelForCausalLM, AutoConfig, Config, AutoTokenizer
|
18 |
|
19 |
+
#from huggingface_hub import InferenceClient
|
20 |
+
from huggingface_hub import Repository, upload_file
|
21 |
+
import os
|
22 |
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
HF_TOKEN = os.getenv('HF_Token')
|
25 |
+
#Log_Path="./Logfolder"
|
26 |
+
logfile = 'DiabetesChatLog.txt'
|
27 |
+
historylog = [{
|
28 |
+
"Prompt": '',
|
29 |
+
"Output": ''
|
30 |
+
}]
|
31 |
|
32 |
+
llm_model = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
33 |
+
# TheBloke/Llama-2-7B-Chat-GGML , TinyLlama/TinyLlama-1.1B-Chat-v1.0 , microsoft/Phi-3-mini-4k-instruct, health360/Healix-1.1B-V1-Chat-dDPO
|
34 |
+
# TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF and tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf not working
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
+
model = AutoModelForCausalLM.from_pretrained(llm_model)
|
37 |
+
tokenizer = AutoTokenizer.from_pretrained(llm_model)
|
38 |
+
#initiate model and tokenizer
|
39 |
|
40 |
+
data = load_dataset("Namitg02/Test", split='train', streaming=False)
|
41 |
+
#Returns a list of dictionaries, each representing a row in the dataset.
|
42 |
+
length = len(data)
|
43 |
|
44 |
+
embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
|
45 |
embedding_dim = embedding_model.get_sentence_embedding_dimension()
|
46 |
# Returns dimensions of embedidng
|
|
|
47 |
|
48 |
+
|
|
|
|
|
|
|
49 |
index = faiss.IndexFlatL2(embedding_dim)
|
50 |
data.add_faiss_index("embeddings", custom_index=index)
|
|
|
51 |
# adds an index column for the embeddings
|
52 |
|
53 |
print("check1d")
|
54 |
#question = "How can I reverse Diabetes?"
|
55 |
|
56 |
SYS_PROMPT = """You are an assistant for answering questions.
|
57 |
+
You are given the extracted parts of documents and a question. Provide a conversational answer.
|
58 |
If you don't know the answer, just say "I do not know." Don't make up an answer."""
|
59 |
# Provides context of how to answer the question
|
60 |
|
61 |
+
|
62 |
print("check2")
|
63 |
|
64 |
+
# memory = ConversationBufferMemory(return_messages=True)
|
65 |
|
|
|
|
|
66 |
|
67 |
terminators = [
|
68 |
tokenizer.eos_token_id, # End-of-Sequence Token that indicates where the model should consider the text sequence to be complete
|
|
|
71 |
# indicates the end of a sequence
|
72 |
|
73 |
|
74 |
+
def search(query: str, k: int = 2 ):
|
75 |
"""a function that embeds a new query and returns the most probable results"""
|
76 |
embedded_query = embedding_model.encode(query) # create embedding of a new query
|
77 |
scores, retrieved_examples = data.get_nearest_examples( # retrieve results
|
|
|
87 |
|
88 |
|
89 |
def format_prompt(prompt,retrieved_documents,k):
|
90 |
+
"""using the retrieved documents we will prompt the model to generate our responses"""
|
91 |
PROMPT = f"Question:{prompt}\nContext:"
|
92 |
for idx in range(k) :
|
93 |
+
PROMPT+= f"{retrieved_documents['0'][idx]}\n"
|
94 |
return PROMPT
|
95 |
|
96 |
# Called by talk function to add retrieved documents to the prompt. Keeps adding text of retrieved documents to string taht are retreived
|
97 |
|
98 |
print("check3")
|
|
|
|
|
|
|
|
|
99 |
|
100 |
+
def talk(prompt, history):
|
101 |
+
k = 2 # number of retrieved documents
|
102 |
scores , retrieved_documents = search(prompt, k) # get retrival scores and examples in dictionary format based on the prompt passed
|
103 |
+
print(retrieved_documents.keys())
|
104 |
formatted_prompt = format_prompt(prompt,retrieved_documents,k) # create a new prompt using the retrieved documents
|
105 |
+
print(retrieved_documents['0'])
|
106 |
+
print(formatted_prompt)
|
107 |
+
formatted_prompt = formatted_prompt[:600] # to avoid memory issue
|
108 |
+
# print(retrieved_documents['0'][1]
|
109 |
+
# print(retrieved_documents['0'][2]
|
110 |
+
print(formatted_prompt)
|
111 |
+
messages = [{"role":"system","content":SYS_PROMPT},{"role":"user","content":formatted_prompt}]
|
112 |
+
# binding the system context and new prompt for LLM
|
113 |
# the chat template structure should be based on text generation model format
|
114 |
print("check3B")
|
115 |
input_ids = tokenizer.apply_chat_template(
|
|
|
125 |
max_new_tokens=300,
|
126 |
eos_token_id=terminators,
|
127 |
do_sample=True,
|
128 |
+
temperature=0.4,
|
129 |
+
top_p=0.95,
|
130 |
)
|
131 |
# calling the model to generate response based on message/ input
|
132 |
# do_sample if set to True uses strategies to select the next token from the probability distribution over the entire vocabulary
|
|
|
144 |
generate_kwargs = dict(
|
145 |
input_ids= input_ids,
|
146 |
streamer=streamer,
|
147 |
+
max_new_tokens= 200,
|
148 |
do_sample=True,
|
149 |
top_p=0.95,
|
150 |
+
temperature=0.4,
|
151 |
eos_token_id=terminators,
|
152 |
)
|
153 |
# send additional parameters to model for generation
|
|
|
164 |
yield "".join(outputs)
|
165 |
print("check3H")
|
166 |
|
167 |
+
pd.options.display.max_colwidth = 800
|
168 |
|
169 |
+
outputstring = ''.join(outputs)
|
170 |
+
|
171 |
+
global historylog
|
172 |
+
historynew = {
|
173 |
+
"Prompt": prompt,
|
174 |
+
"Output": outputstring
|
175 |
+
}
|
176 |
+
historylog.append(historynew)
|
177 |
+
return historylog
|
178 |
+
print(historylog)
|
179 |
+
|
180 |
+
# history.update({prompt: outputstring})
|
181 |
+
# print(history)
|
182 |
+
#print(memory_string2)
|
183 |
+
#with open(logfile, 'a', encoding='utf-8') as f:
|
184 |
+
# f.write(memory_string2)
|
185 |
+
# f.write('\n')
|
186 |
+
#f.close()
|
187 |
+
#print(logfile)
|
188 |
+
#logfile.push_to_hub("Namitg02/",token = HF_TOKEN)
|
189 |
+
#memory_panda = pd.DataFrame()
|
190 |
+
#if len(memory_panda) == 0:
|
191 |
+
# memory_panda = pd.DataFrame(memory_string)
|
192 |
+
#else:
|
193 |
+
# memory_panda = memory_panda.append(memory_string, ignore_index=True)
|
194 |
+
#print(memory_panda.iloc[[0]])
|
195 |
+
|
196 |
+
#memory_panda.loc[len(memory_panda.index)] = ['prompt', outputstring]
|
197 |
+
#print(memory_panda.iloc[[1]])
|
198 |
+
#Logfile = Dataset.from_pandas(memory_panda)
|
199 |
+
#Logfile.push_to_hub("Namitg02/Logfile",token = HF_TOKEN)
|
200 |
+
|
201 |
+
|
202 |
TITLE = "AI Copilot for Diabetes Patients"
|
203 |
|
204 |
+
DESCRIPTION = "I provide answers to concerns related to Diabetes"
|
205 |
|
206 |
import gradio as gr
|
207 |
# Design chatbot
|
|
|
223 |
)
|
224 |
# launch chatbot and calls the talk function which in turn calls other functions
|
225 |
print("check3I")
|
226 |
+
print(historylog)
|
227 |
+
memory_panda = pd.DataFrame(historylog)
|
228 |
+
Logfile = Dataset.from_pandas(memory_panda)
|
229 |
+
Logfile.push_to_hub("Namitg02/Logfile",token = HF_TOKEN)
|
230 |
demo.launch()
|