Update app.py
Browse files
app.py
CHANGED
@@ -30,9 +30,6 @@ vectordb = Chroma.from_documents(
|
|
30 |
|
31 |
retriever = vectordb.as_retriever()
|
32 |
|
33 |
-
import gradio as gr
|
34 |
-
gr.load("models/HuggingFaceH4/zephyr-7b-beta").launch()
|
35 |
-
|
36 |
#docs_ss = vectordb.similarity_search(question,k=3)
|
37 |
|
38 |
|
@@ -51,10 +48,6 @@ Helpful Answer:"""
|
|
51 |
QA_CHAIN_PROMPT = PromptTemplate.from_template(template)
|
52 |
|
53 |
|
54 |
-
from langchain.chains import ConversationalRetrievalChain
|
55 |
-
#qa_chain = RetrievalQA.from_chain_type(models/HuggingFaceH4/zephyr-7b-beta,retriever=vectordb.as_retriever(),chain_type_kwargs={"prompt": QA_CHAIN_PROMPT})
|
56 |
-
|
57 |
-
|
58 |
from langchain.memory import ConversationBufferMemory
|
59 |
memory = ConversationBufferMemory(
|
60 |
memory_key="chat_history",
|
@@ -64,9 +57,14 @@ memory = ConversationBufferMemory(
|
|
64 |
question = "Can I reverse Diabetes?"
|
65 |
print("template")
|
66 |
|
|
|
|
|
67 |
retriever=vectordb.as_retriever()
|
68 |
READER_MODEL = "HuggingFaceH4/zephyr-7b-beta"
|
69 |
qa = ConversationalRetrievalChain.from_llm(llm=READER_MODEL,retriever=retriever,memory=memory,chain_type_kwargs={"prompt": QA_CHAIN_PROMPT})
|
70 |
|
|
|
|
|
|
|
71 |
#result = ({"query": question})
|
72 |
print("qa")
|
|
|
30 |
|
31 |
retriever = vectordb.as_retriever()
|
32 |
|
|
|
|
|
|
|
33 |
#docs_ss = vectordb.similarity_search(question,k=3)
|
34 |
|
35 |
|
|
|
48 |
QA_CHAIN_PROMPT = PromptTemplate.from_template(template)
|
49 |
|
50 |
|
|
|
|
|
|
|
|
|
51 |
from langchain.memory import ConversationBufferMemory
|
52 |
memory = ConversationBufferMemory(
|
53 |
memory_key="chat_history",
|
|
|
57 |
question = "Can I reverse Diabetes?"
|
58 |
print("template")
|
59 |
|
60 |
+
from langchain.chains import ConversationalRetrievalChain
|
61 |
+
|
62 |
retriever=vectordb.as_retriever()
|
63 |
READER_MODEL = "HuggingFaceH4/zephyr-7b-beta"
|
64 |
qa = ConversationalRetrievalChain.from_llm(llm=READER_MODEL,retriever=retriever,memory=memory,chain_type_kwargs={"prompt": QA_CHAIN_PROMPT})
|
65 |
|
66 |
+
import gradio as gr
|
67 |
+
gr.load("READER_MODEL").launch()
|
68 |
+
|
69 |
#result = ({"query": question})
|
70 |
print("qa")
|