File size: 5,470 Bytes
d8dd7fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
#Onnx export code is from [labelme annotation tool](https://github.com/labelmeai/efficient-sam). Huge thanks to Kentaro Wada.
import torch
import torch.nn.functional as F
class OnnxEfficientSam(torch.nn.Module):
def __init__(self, model):
super().__init__()
self.model = model
@property
def decoder_max_num_input_points(self):
return self.model.decoder_max_num_input_points
@property
def image_encoder(self):
return self.model.image_encoder
@property
def get_image_embeddings(self):
return self.model.get_image_embeddings
@property
def prompt_encoder(self):
return self.model.prompt_encoder
@property
def mask_decoder(self):
return self.model.mask_decoder
def forward(
self,
batched_images: torch.Tensor,
batched_points: torch.Tensor,
batched_point_labels: torch.Tensor,
):
batch_size, _, input_h, input_w = batched_images.shape
image_embeddings = self.get_image_embeddings(batched_images)
return self.predict_masks(
image_embeddings,
batched_points,
batched_point_labels,
multimask_output=True,
input_h=input_h,
input_w=input_w,
output_h=input_h,
output_w=input_w,
)
def get_rescaled_pts(
self, batched_points: torch.Tensor, input_h: int, input_w: int
):
return torch.stack(
[
batched_points[..., 0] * self.image_encoder.img_size / input_w,
batched_points[..., 1] * self.image_encoder.img_size / input_h,
],
dim=-1,
)
def predict_masks(
self,
image_embeddings: torch.Tensor,
batched_points: torch.Tensor,
batched_point_labels: torch.Tensor,
multimask_output: bool,
input_h: int,
input_w: int,
output_h: int = -1,
output_w: int = -1,
):
batch_size, max_num_queries, num_pts, _ = batched_points.shape
num_pts = batched_points.shape[2]
rescaled_batched_points = self.get_rescaled_pts(
batched_points, input_h, input_w
)
if num_pts > self.decoder_max_num_input_points:
rescaled_batched_points = rescaled_batched_points[
:, :, : self.decoder_max_num_input_points, :
]
batched_point_labels = batched_point_labels[
:, :, : self.decoder_max_num_input_points
]
elif num_pts < self.decoder_max_num_input_points:
rescaled_batched_points = F.pad(
rescaled_batched_points,
(0, 0, 0, self.decoder_max_num_input_points - num_pts),
value=-1.0,
)
batched_point_labels = F.pad(
batched_point_labels,
(0, self.decoder_max_num_input_points - num_pts),
value=-1.0,
)
sparse_embeddings = self.prompt_encoder(
rescaled_batched_points.reshape(
batch_size * max_num_queries, self.decoder_max_num_input_points, 2
),
batched_point_labels.reshape(
batch_size * max_num_queries, self.decoder_max_num_input_points
),
)
sparse_embeddings = sparse_embeddings.view(
batch_size,
max_num_queries,
sparse_embeddings.shape[1],
sparse_embeddings.shape[2],
)
low_res_masks, iou_predictions = self.mask_decoder(
image_embeddings,
self.prompt_encoder.get_dense_pe(),
sparse_prompt_embeddings=sparse_embeddings,
multimask_output=multimask_output,
)
_, num_predictions, low_res_size, _ = low_res_masks.shape
if output_w > 0 and output_h > 0:
output_masks = F.interpolate(
low_res_masks,
(output_h, output_w),
# NOTE: "bicubic" is inefficient on onnx
mode="bilinear",
)
output_masks = torch.reshape(
output_masks,
(batch_size, max_num_queries, num_predictions, output_h, output_w),
)
else:
output_masks = torch.reshape(
low_res_masks,
(
batch_size,
max_num_queries,
num_predictions,
low_res_size,
low_res_size,
),
)
iou_predictions = torch.reshape(
iou_predictions, (batch_size, max_num_queries, num_predictions)
)
return output_masks, iou_predictions, low_res_masks
class OnnxEfficientSamEncoder(OnnxEfficientSam):
def forward(self, batched_images: torch.Tensor):
return self.model.get_image_embeddings(batched_images)
class OnnxEfficientSamDecoder(OnnxEfficientSam):
def forward(
self, image_embeddings, batched_points, batched_point_labels, orig_im_size
):
return self.predict_masks(
image_embeddings=image_embeddings,
batched_points=batched_points,
batched_point_labels=batched_point_labels,
multimask_output=True,
input_h=orig_im_size[0],
input_w=orig_im_size[1],
output_h=orig_im_size[0],
output_w=orig_im_size[1],
)
|