EfficientSAM_vs_SAM / EfficientSAM-main /EfficientSAM_onnx_example.py
NandiniLokeshReddy's picture
Upload 38 files
d8dd7fb verified
raw
history blame
2.43 kB
#Onnx export code is from [labelme annotation tool](https://github.com/labelmeai/efficient-sam). Huge thanks to Kentaro Wada.
import numpy as np
import torch
import imgviz
import onnxruntime
import time
from PIL import Image
def predict_onnx(input_image, input_points, input_labels):
if 0:
inference_session = onnxruntime.InferenceSession(
"weights/efficient_sam_vitt.onnx"
)
(
predicted_logits,
predicted_iou,
predicted_lowres_logits,
) = inference_session.run(
output_names=None,
input_feed={
"batched_images": input_image,
"batched_point_coords": input_points,
"batched_point_labels": input_labels,
},
)
else:
inference_session = onnxruntime.InferenceSession(
"weights/efficient_sam_vitt_encoder.onnx"
)
t_start = time.time()
image_embeddings, = inference_session.run(
output_names=None,
input_feed={
"batched_images": input_image,
},
)
print("encoder time", time.time() - t_start)
inference_session = onnxruntime.InferenceSession(
"weights/efficient_sam_vitt_decoder.onnx"
)
t_start = time.time()
(
predicted_logits,
predicted_iou,
predicted_lowres_logits,
) = inference_session.run(
output_names=None,
input_feed={
"image_embeddings": image_embeddings,
"batched_point_coords": input_points,
"batched_point_labels": input_labels,
"orig_im_size": np.array(input_image.shape[2:], dtype=np.int64),
},
)
print("decoder time", time.time() - t_start)
mask = predicted_logits[0, 0, 0, :, :] >= 0
imgviz.io.imsave(f"figs/examples/dogs_onnx_mask.png", mask)
def main():
image = np.array(Image.open("figs/examples/dogs.jpg"))
input_image = image.transpose(2, 0, 1)[None].astype(np.float32) / 255.0
# batch_size, num_queries, num_points, 2
input_points = np.array([[[[580, 350], [650, 350]]]], dtype=np.float32)
# batch_size, num_queries, num_points
input_labels = np.array([[[1, 1]]], dtype=np.float32)
predict_onnx(input_image, input_points, input_labels)
if __name__ == "__main__":
main()