QwenBaseModel / app.py
NandiniLokeshReddy's picture
Update app.py
761cff5 verified
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image
import warnings
# Suppress warnings
warnings.filterwarnings('ignore')
# Ensure CUDA device is used
torch.set_default_device('cuda')
# Load the model and tokenizer
model_name = 'qnguyen3/nanoLLaVA-1.5'
try:
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
device_map='auto',
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True
)
except ImportError as e:
print("Error: Missing required dependencies. Make sure flash_attn is installed.")
raise e
# Function to describe the uploaded image
def describe_image(image, prompt="Describe this image in detail"):
messages = [{"role": "user", "content": f'<image>\n{prompt}'}]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
# Tokenize the text
text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')]
input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0)
# Process the image
image_tensor = model.process_images([image], model.config).to(dtype=model.dtype)
# Generate a response
output_ids = model.generate(
input_ids,
images=image_tensor,
max_new_tokens=2048,
use_cache=True
)[0]
# Decode and return the response
description = tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip()
return description
# Set up the Gradio interface
gr.Interface(
fn=describe_image,
inputs=[gr.inputs.Image(type="pil"), gr.inputs.Textbox(default="Describe this image in detail")],
outputs="text",
title="Image Description Model",
description="Upload an image and receive a detailed description."
).launch()