Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import joblib
|
2 |
+
import numpy as np
|
3 |
+
from fastapi import FastAPI
|
4 |
+
from pydantic import BaseModel
|
5 |
+
import uvicorn
|
6 |
+
|
7 |
+
# Initialize FastAPI app
|
8 |
+
app = FastAPI()
|
9 |
+
|
10 |
+
# Load model and scaler
|
11 |
+
model = joblib.load('conme.pkl')
|
12 |
+
scaler = joblib.load('scaler.joblib')
|
13 |
+
|
14 |
+
class InputData(BaseModel):
|
15 |
+
soil_moisture: float
|
16 |
+
temperature: float
|
17 |
+
air_humidity: float
|
18 |
+
light_intensity: float
|
19 |
+
|
20 |
+
@app.post("/predict")
|
21 |
+
def predict(data: InputData):
|
22 |
+
# Prepare input data
|
23 |
+
input_data = np.array([[data.soil_moisture, data.temperature, data.air_humidity, data.light_intensity]])
|
24 |
+
|
25 |
+
# Scale the data
|
26 |
+
std_data = scaler.transform(input_data)
|
27 |
+
|
28 |
+
# Make prediction
|
29 |
+
prediction = model.predict(std_data)
|
30 |
+
|
31 |
+
return {"prediction": int(prediction[0])} # Convert prediction to int (0 or 1)
|
32 |
+
|
33 |
+
if __name__ == "__main__":
|
34 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|