Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -33,9 +33,23 @@ def extract_text_from_pdf(pdf_path):
|
|
| 33 |
def create_vector_db(text_chunks):
|
| 34 |
"""Embeds text chunks and adds them to FAISS index"""
|
| 35 |
global documents, index
|
|
|
|
| 36 |
documents = text_chunks
|
| 37 |
embeddings = embed_model.encode(text_chunks)
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
def search_relevant_text(query):
|
| 41 |
"""Finds the most relevant text chunk for the given query"""
|
|
|
|
| 33 |
def create_vector_db(text_chunks):
|
| 34 |
"""Embeds text chunks and adds them to FAISS index"""
|
| 35 |
global documents, index
|
| 36 |
+
|
| 37 |
documents = text_chunks
|
| 38 |
embeddings = embed_model.encode(text_chunks)
|
| 39 |
+
|
| 40 |
+
# Convert embeddings to np.float32 for FAISS
|
| 41 |
+
embeddings = np.array(embeddings, dtype=np.float32)
|
| 42 |
+
|
| 43 |
+
# Ensure that embeddings have the correct shape (should be 2D, with each vector having the right dimension)
|
| 44 |
+
if embeddings.ndim == 1: # If only one embedding, reshape it
|
| 45 |
+
embeddings = embeddings.reshape(1, -1)
|
| 46 |
+
|
| 47 |
+
# Add embeddings to the FAISS index
|
| 48 |
+
index.add(embeddings)
|
| 49 |
+
|
| 50 |
+
# Check if adding was successful (optional)
|
| 51 |
+
if index.ntotal == 0:
|
| 52 |
+
print("Error: FAISS index is empty after adding embeddings.")
|
| 53 |
|
| 54 |
def search_relevant_text(query):
|
| 55 |
"""Finds the most relevant text chunk for the given query"""
|