File size: 2,666 Bytes
ace6b64
 
 
eb9f3cc
 
 
 
 
 
bc8ae3b
eb9f3cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import nltk
nltk.download(['stopwords', 'punkt'])

from summarize import summarize
from data import data
import streamlit as st


st.write("""
#  Pharma Company POC
""")

st.sidebar.image("./NarrativaLogoBlanco.png")


def make_summarizing(new_body, hide=False, num_sentences=3):
    if hide:
        return ''
    result = summarize(
        new_body, sentence_count=num_sentences, language='english')
    return result


st.subheader("Overview")


st.write("""
         ##### Topics:
         - Cancer
         - immuno-oncology
         - New Therapy
         - BiTE
         """)
st.write("""
         ##### Summary:
         """)
st.write(make_summarizing(data["intro"]))
st.write('---')


st.write('##### Conversation:')
st.write("""
         
         ***Overview of the current therapeutic landscape for cancer and the immuno-oncology***
         
         """)
st.write(make_summarizing(data["block_1"]))


st.write("""
         
         ***How does the BiTE platform and constituent BiTE molecules actually work***
         
         """)
st.write(make_summarizing(data["block_2"], num_sentences=4))


st.write("""
         
         ***Where BiTE molecules are currently being studied***

         """)
st.write(make_summarizing(data["block_3"], num_sentences=3))


st.write("""
         
         ***Practial approach: Myeloma and BiTE***
         
         """)
st.write(make_summarizing(data["block_4"], num_sentences=6))


st.write("""
         
         ***Acute Myeloid Leukemia and BiTE molecules***

         """)
st.write(make_summarizing(data["block_5"], num_sentences=6))


st.write("""
         
         ***BiTE molecules for solid tumor types***

         """)
st.write(make_summarizing(data["block_6"], num_sentences=4))


st.write("""
         
         ***Takeaways***

         """)
st.write(make_summarizing(data["block_7"], num_sentences=3))


st.write("""
# MRD Slide Deck
""")
st.write("""
         ### Current Landscape in Minimal Residual Disease (MRD) Testing in Hematologic Malignancies
         """)


st.write("""
        - MRD is the presence of malignant cells under the detection limit of conventional methods
        - Strong prognostic indicator of patient outcomes
        - Potential for use in guiding treatment decisions
            - Intensity of therapy
            - Appropriateness of SCT
        - Currently measured using flow cytometry or qPCR
            - Newer testing methods are emerging
        - MRD is currently being evaluated as a potential surrogate endpoint, and may have the potential to replace or augment morphological CR as a response criteria in certain hematologic malignancies
        """)