Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import pipeline | |
import numpy as np | |
import pandas as pd | |
import re | |
import torch | |
import altair as alt | |
alt.data_transformers.disable_max_rows() | |
number_re = re.compile(r"\.[0-9]*\.") | |
STATE_DICT = {} | |
DATA = pd.DataFrame() | |
def scatter_plot_fn(group_name): | |
global DATA | |
df = DATA[DATA.group_name == group_name] | |
return gr.LinePlot.update( | |
value=df, | |
x="rank", | |
y="val", | |
color="layer", | |
tooltip=["val", "rank", "layer"], | |
caption="", | |
) | |
def find_choices(state_dict): | |
if not state_dict: | |
return [] | |
global DATA | |
layered_tensors = [k for k, v in state_dict.items() if number_re.findall(k) and len(v.shape) == 2] | |
choices = set() | |
data = [] | |
for name in layered_tensors: | |
group_name = number_re.sub(".{N}.", name) | |
choices.add(group_name) | |
layer = int(number_re.search(name).group()[1:-1]) | |
svdvals = torch.linalg.svdvals(state_dict[name]) | |
svdvals /= svdvals.sum() | |
for rank, val in enumerate(svdvals.tolist()): | |
data.append((name, layer, group_name, rank, val)) | |
data = np.array(data) | |
DATA = pd.DataFrame(data, columns=["name", "layer", "group_name", "rank", "val"]) | |
DATA["val"] = DATA["val"].astype("float") | |
DATA["layer"] = DATA["layer"].astype("category") | |
DATA["rank"] = DATA["rank"].astype("int32") | |
return choices | |
def weights_fn(model_id): | |
global STATE_DICT | |
try: | |
pipe = pipeline(model=model_id) | |
STATE_DICT = pipe.model.state_dict() | |
except Exception as e: | |
print(e) | |
STATE_DICT = {} | |
choices = find_choices(STATE_DICT) | |
return gr.Dropdown.update(choices=choices) | |
with gr.Blocks() as scatter_plot: | |
with gr.Row(): | |
with gr.Column(): | |
model_id = gr.Textbox(label="model_id") | |
weights = gr.Dropdown(label="weights") | |
with gr.Column(): | |
plot = gr.LinePlot(show_label=False).style(container=True) | |
model_id.change(weights_fn, inputs=model_id, outputs=weights) | |
weights.change(fn=scatter_plot_fn, inputs=weights, outputs=plot) | |
if __name__ == "__main__": | |
scatter_plot.launch() | |