Create main.py
Browse files
main.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
try: from pip._internal.operations import freeze
|
2 |
+
except ImportError: # pip < 10.0
|
3 |
+
from pip.operations import freeze
|
4 |
+
|
5 |
+
pkgs = freeze.freeze()
|
6 |
+
for pkg in pkgs: print(pkg)
|
7 |
+
import os
|
8 |
+
import uvicorn
|
9 |
+
from fastapi import FastAPI, HTTPException, File, UploadFile,Query
|
10 |
+
from fastapi.middleware.cors import CORSMiddleware
|
11 |
+
from PyPDF2 import PdfReader
|
12 |
+
import google.generativeai as genai
|
13 |
+
import json
|
14 |
+
from PIL import Image
|
15 |
+
import io
|
16 |
+
import requests
|
17 |
+
import fitz # PyMuPDF
|
18 |
+
import os
|
19 |
+
|
20 |
+
|
21 |
+
from dotenv import load_dotenv
|
22 |
+
# Load the environment variables from the .env file
|
23 |
+
load_dotenv()
|
24 |
+
|
25 |
+
# Configure Gemini API
|
26 |
+
secret = os.environ["GEMINI"]
|
27 |
+
genai.configure(api_key=secret)
|
28 |
+
model_vision = genai.GenerativeModel('gemini-1.5-flash')
|
29 |
+
model_text = genai.GenerativeModel('gemini-pro')
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
app = FastAPI()
|
37 |
+
|
38 |
+
app.add_middleware(
|
39 |
+
CORSMiddleware,
|
40 |
+
allow_origins=["*"],
|
41 |
+
allow_credentials=True,
|
42 |
+
allow_methods=["*"],
|
43 |
+
allow_headers=["*"],
|
44 |
+
)
|
45 |
+
|
46 |
+
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
def vision(file_content):
|
51 |
+
# Open the PDF
|
52 |
+
pdf_document = fitz.open("pdf",file_content)
|
53 |
+
gemini_input = ["extract the whole text"]
|
54 |
+
# Iterate through the pages
|
55 |
+
for page_num in range(len(pdf_document)):
|
56 |
+
# Select the page
|
57 |
+
page = pdf_document.load_page(page_num)
|
58 |
+
|
59 |
+
# Render the page to a pixmap (image)
|
60 |
+
pix = page.get_pixmap()
|
61 |
+
print(type(pix))
|
62 |
+
|
63 |
+
# Convert the pixmap to bytes
|
64 |
+
img_bytes = pix.tobytes("png")
|
65 |
+
|
66 |
+
# Convert bytes to a PIL Image
|
67 |
+
img = Image.open(io.BytesIO(img_bytes))
|
68 |
+
gemini_input.append(img)
|
69 |
+
# # Save the image if needed
|
70 |
+
# img.save(f'page_{page_num + 1}.png')
|
71 |
+
|
72 |
+
print("PDF pages converted to images successfully!")
|
73 |
+
|
74 |
+
# Now you can pass the PIL image to the model_vision
|
75 |
+
response = model_vision.generate_content(gemini_input).text
|
76 |
+
return response
|
77 |
+
|
78 |
+
|
79 |
+
@app.post("/get_ocr_data/")
|
80 |
+
async def get_data(input_file: UploadFile = File(...)):
|
81 |
+
#try:
|
82 |
+
# Determine the file type by reading the first few bytes
|
83 |
+
file_content = await input_file.read()
|
84 |
+
file_type = input_file.content_type
|
85 |
+
|
86 |
+
text = ""
|
87 |
+
|
88 |
+
if file_type == "application/pdf":
|
89 |
+
# Read PDF file using PyPDF2
|
90 |
+
pdf_reader = PdfReader(io.BytesIO(file_content))
|
91 |
+
for page in pdf_reader.pages:
|
92 |
+
text += page.extract_text()
|
93 |
+
|
94 |
+
if len(text)<10:
|
95 |
+
print("vision called")
|
96 |
+
text = vision(file_content)
|
97 |
+
else:
|
98 |
+
raise HTTPException(status_code=400, detail="Unsupported file type")
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
# Call Gemini (or another model) to extract required data
|
103 |
+
prompt = f"""This is CV data: {text.strip()}
|
104 |
+
IMPORTANT: The output should be a JSON array! Make Sure the JSON is valid.
|
105 |
+
|
106 |
+
Example Output:
|
107 |
+
[
|
108 |
+
"firstname" : "firstname",
|
109 |
+
"lastname" : "lastname",
|
110 |
+
"email" : "email",
|
111 |
+
"contact_number" : "contact number",
|
112 |
+
"home_address" : "full home address",
|
113 |
+
"home_town" : "home town or city",
|
114 |
+
"total_years_of_experience" : "total years of experience",
|
115 |
+
"education": "Institution Name, Degree Name",
|
116 |
+
"LinkedIn_link" : "LinkedIn link",
|
117 |
+
"experience" : "experience",
|
118 |
+
"industry": "industry of work",
|
119 |
+
"skills" : skills(Identify and list specific skills mentioned in both the skills section and inferred from the experience section)
|
120 |
+
"positions": [ "Job title 1", "Job title 2", "Job title 3" ],
|
121 |
+
"summary": "Generate a summary of the CV, including key qualifications, notable experiences, and relevant skills."
|
122 |
+
|
123 |
+
|
124 |
+
|
125 |
+
|
126 |
+
|
127 |
+
|
128 |
+
]
|
129 |
+
"""
|
130 |
+
|
131 |
+
response = model_text.generate_content(prompt)
|
132 |
+
print(response.text)
|
133 |
+
data = json.loads(response.text.replace("JSON", "").replace("json", "").replace("```", ""))
|
134 |
+
return {"data": data}
|
135 |
+
|
136 |
+
#except Exception as e:
|
137 |
+
#raise HTTPException(status_code=500, detail=f"Error processing file: {str(e)}")
|