Nasma commited on
Commit
3ca85e9
·
verified ·
1 Parent(s): ad754fb

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +84 -0
app.py ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import streamlit as st
3
+ import pdfplumber
4
+ from fuzzywuzzy import fuzz
5
+ from sklearn.metrics.pairwise import cosine_similarity
6
+ import spacy
7
+
8
+ # Load the SpaCy model
9
+ #nlp = spacy.load("en_core_web_sm")
10
+
11
+ import spacy
12
+ try:
13
+ nlp = spacy.load("en_core_web_sm")
14
+ except OSError:
15
+ # If the model is not found, download it
16
+ from spacy.cli import download
17
+ download("en_core_web_sm")
18
+ nlp = spacy.load("en_core_web_sm")
19
+
20
+
21
+ # Function to extract entities from text
22
+ def extract_entities(text):
23
+ doc = nlp(text)
24
+ entities = {ent.label_: ent.text for ent in doc.ents}
25
+ return entities
26
+
27
+ # Function to compute matching score
28
+ def compute_advanced_matching_score(cv_text, cv_entities, required_education, required_skills, required_experience):
29
+ score = 0
30
+
31
+ # Named Entity Recognition Matching for Education
32
+ education = cv_entities.get('EDU', '')
33
+ score += fuzz.token_set_ratio(education, required_education) / 100
34
+
35
+ # Fuzzy Matching for Skills
36
+ for skill in required_skills:
37
+ max_skill_match_score = max([fuzz.token_set_ratio(skill, skill_in_cv) for skill_in_cv in cv_text.split()] + [0])
38
+ score += max_skill_match_score / 100
39
+
40
+ # Vector Similarity Matching for Experience
41
+ experience_text = cv_entities.get('DATE', '')
42
+ doc1 = nlp(experience_text)
43
+ doc2 = nlp(f"{required_experience} years")
44
+ score += cosine_similarity(doc1.vector.reshape(1, -1), doc2.vector.reshape(1, -1))[0][0]
45
+
46
+ return score
47
+
48
+ # Function to process CVs and compute scores
49
+ def process_cvs(uploaded_files, required_education, required_skills, required_experience, top_cvs_count):
50
+ cv_scores = {}
51
+ for uploaded_file in uploaded_files:
52
+ file_extension = uploaded_file.name.split('.')[-1]
53
+ if file_extension in ["pdf"]:
54
+ with pdfplumber.open(uploaded_file) as pdf:
55
+ text = ''
56
+ for page in pdf.pages:
57
+ text += page.extract_text()
58
+ entities = extract_entities(text)
59
+ cv_scores[uploaded_file.name] = compute_advanced_matching_score(text, entities, required_education, required_skills, required_experience)
60
+
61
+ top_cvs = sorted(cv_scores.items(), key=lambda x: x[1], reverse=True)[:top_cvs_count]
62
+ return top_cvs
63
+
64
+ def main():
65
+ st.markdown('<style>h1{text-align:center;}</style>', unsafe_allow_html=True) # Center-align the title
66
+ st.title("Resume Filtering App")
67
+
68
+
69
+ uploaded_files = st.file_uploader("Upload Resume Files", type=["pdf"], accept_multiple_files=True)
70
+ required_education = st.text_input("Required Education")
71
+ required_skills = st.text_input("Required Skills (comma-separated)")
72
+ required_experience = st.text_input("Required Experience")
73
+ top_cvs_count = st.number_input("Number of Top Resume to Display", min_value=1, step=1, value=3)
74
+
75
+ if st.button("Match Resume"):
76
+ if uploaded_files and required_education and required_skills and required_experience:
77
+ required_skills = [skill.strip() for skill in required_skills.split(',')]
78
+ top_cvs = process_cvs(uploaded_files, required_education, required_skills, required_experience, top_cvs_count)
79
+ st.subheader("Top Matching Resume:")
80
+ for filename, score in top_cvs:
81
+ st.write(f"{filename}: {score:.2f}")
82
+
83
+ if __name__ == "__main__":
84
+ main()