Spaces:
Runtime error
Runtime error
File size: 1,401 Bytes
fde294f eb3ef64 fde294f eb3ef64 fde294f eb3ef64 fde294f eb3ef64 fde294f eb3ef64 fde294f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
import streamlit as st
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
# Load pre-trained model and tokenizer
model_name = "ahmed792002/Finetuning_MBart_English_Arabic_Translation"
model = MBartForConditionalGeneration.from_pretrained(model_name)
tokenizer = MBart50TokenizerFast.from_pretrained(model_name)
# Set source and target languages
tokenizer.src_lang = "en_XX" # Source language
tokenizer.tgt_lang = "ar_AR" # Target language
# Streamlit App
st.title("English to Arabic Translation")
st.write("Enter text in English to translate it to Arabic:")
# Input box for English text
english_text = st.text_area("Enter English Text")
# Translate the text when the button is clicked
if st.button("Translate"):
if english_text.strip():
# Tokenize the input
inputs = tokenizer(english_text, return_tensors="pt", padding=True, src_lang="en_XX")
st.write(f"Tokenized inputs: {inputs}") # Debugging log
# Generate translation
translated = model.generate(**inputs)
st.write(f"Generated tokens: {translated}") # Debugging log
# Decode the translated text
translated_text = tokenizer.decode(translated[0], skip_special_tokens=True)
# Display the translated text
st.write(f"Translated text: {translated_text}")
else:
st.write("Please enter some English text to translate.")
|