import streamlit as st from transformers import MBartForConditionalGeneration, MBart50TokenizerFast # Load pre-trained model and tokenizer model_name = "ahmed792002/Finetuning_MBart_English_Arabic_Translation" model = MBartForConditionalGeneration.from_pretrained(model_name) tokenizer = MBart50TokenizerFast.from_pretrained(model_name) # Set source and target languages tokenizer.src_lang = "en_XX" # Source language tokenizer.tgt_lang = "ar_AR" # Target language # Streamlit App st.title("English to Arabic Translation") st.write("Enter text in English to translate it to Arabic:") # Input box for English text english_text = st.text_area("Enter English Text") # Translate the text when the button is clicked if st.button("Translate"): if english_text.strip(): # Tokenize the input inputs = tokenizer(english_text, return_tensors="pt", padding=True, src_lang="en_XX") st.write(f"Tokenized inputs: {inputs}") # Debugging log # Generate translation translated = model.generate(**inputs) st.write(f"Generated tokens: {translated}") # Debugging log # Decode the translated text translated_text = tokenizer.decode(translated[0], skip_special_tokens=True) # Display the translated text st.write(f"Translated text: {translated_text}") else: st.write("Please enter some English text to translate.")