Spaces:
Runtime error
Runtime error
File size: 14,822 Bytes
725441e f75cd82 c1e3254 3253628 3124988 af62000 725441e 263ad67 f77e0d0 725441e 3253628 725441e 870119b 1c8a8bf 3124988 83c39e6 3124988 6dd4540 3124988 af62000 3124988 af62000 3124988 af62000 3124988 725441e 83c39e6 725441e 678f4b7 725441e c1e3254 3253628 725441e 5e80c1b 625c426 5e80c1b 2f28d13 3253628 2f28d13 3253628 2f28d13 3253628 2f28d13 725441e bada12c 725441e 0c7275f 3253628 de35eef 3253628 20c271f 3124988 09153df fa48446 870119b b1e45d9 09153df 0c7275f 8d6856a 263ad67 8d6856a fc0233a 8d6856a 725441e b1e45d9 725441e b1e45d9 725441e de8d0db 72698d6 263ad67 72698d6 dfddd70 3253628 dfddd70 72698d6 1c8a8bf b1e45d9 1c8a8bf b1e45d9 3124988 c8018ef 1c8a8bf 8766483 3124988 1c8a8bf 8766483 f8ed147 8766483 1c8a8bf f8ed147 1c8a8bf f8ed147 83c39e6 f8ed147 1c8a8bf 72698d6 bcf937e 4a487bf bcf937e 870119b bcf937e 870119b bcf937e 3253628 a13ff21 3253628 a13ff21 3253628 263ad67 bcf937e a3e1d9e 725441e 3253628 a3e1d9e 3253628 725441e 3253628 725441e 3253628 5e80c1b 3253628 3124988 a3e1d9e 3124988 1c8a8bf 3124988 b1e45d9 3124988 dbc0b49 202b26f 3124988 b62a97d 3253628 3124988 b62a97d 3124988 b1e45d9 3124988 b1e45d9 1c8a8bf 3253628 83c39e6 725441e 3124988 870119b 725441e 6d8bcbe 3253628 3124988 294f6a8 6d8bcbe 3124988 12299c2 6d8bcbe 725441e 83c39e6 3124988 725441e a3e1d9e 725441e 3124988 725441e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
import gradio as gr
import numpy as np
from PIL import Image
import requests
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import joblib
import hopsworks
from tqdm import tqdm
import xgboost as xgb
from geopy.geocoders import Nominatim
from datetime import date
from datetime import timedelta
from autogluon.tabular import TabularPredictor
import shutil
# Login to hopsworks and get the feature store
# streetName;number;sqm;rooms;soldDate;monthlyFee;monthlyCost;floor;yearBuilt;brf;agency;lat;lon;gdp;unemployment;interestRate
columnHeaders = ['streetName','number','sqm','rooms','soldDate','monthlyFee','monthlyCost','floor','yearBuilt', 'brf','agency','lat','lon'] # ,'gdp','unemployment','interestRate'
featureToMinMax = {
'sqm': (10, 800),
'rooms': (1, 20),
'monthlyFee': (0, 60000),
'monthlyCost': (0, 20000),
'floor': (-3, 35),
'yearBuilt': (1850, 2023),
'lat': (58.8, 60.2),
'lon': (17.5, 19.1),
'gdp': (505.1, 630.14),
'unemployment': (6.36, 8.66),
'interestRate': (-0.5, 2.64),
'number': (0, 300),
'soldDate': (2010, 2025)
} # Extracted from the data
featureToName = {
'number' : 'Street number',
'sqm' : 'Size of the apartment in square meters',
'rooms' : 'Number of rooms',
'monthlyFee' : 'Monthly fee',
'monthlyCost' : 'Monthly operating cost',
'floor' : 'Floor',
'yearBuilt' : 'Year built',
'streetName' : 'Name of street',
}
topAgencies = ['Fastighetsbyrån','Notar','Svensk Fastighetsförmedling','HusmanHagberg','Länsförsäkringar Fastighetsförmedling','Erik Olsson','SkandiaMäklarna','Svenska Mäklarhuset','Bjurfors','Mäklarhuset','BOSTHLM','Innerstadsspecialisten','MOHV','Mäklarringen','Historiska Hem','Södermäklarna','Karlsson & Uddare','UNIK Fastighetsförmedling','Edward & Partners','Widerlöv']
def downloadAutogluonModel():
# Download saved Autogluon model from Hopsworks
project = hopsworks.login()
mr = project.get_model_registry()
temp = mr.get_model("ag_model_20230109", version=5)
temp_ag_folder_path = temp.download()
print(temp_ag_folder_path)
moveFolder(temp_ag_folder_path)
ag_model = TabularPredictor.load("AutogluonModels/ag_model_20230109") # '/ag_model_20230109'
return ag_model
def moveFolder(temp_ag_folder_path):
# Move Autogluon model folder to the correct folder
original = temp_ag_folder_path
target = "AutogluonModels/"
shutil.move(original, target)
def downloadModel():
# Download saved Autogluon model from Hopsworks
project = hopsworks.login()
mr = project.get_model_registry()
temp = mr.get_model("xgboost_model", version=5)
model_path = temp.download()
xgb_model = joblib.load(model_path + "/xgboost_model.pkl")
return xgb_model
def getAddressInfo(streetName, number):
streetName = cleanAddress(streetName)
try:
return getCoordinatesFromAddress(streetName, number)
except AddressNotFound:
return None, None
# Adds the financial data to the apartment data
def populateApartmentData(aptDf):
print('Populating with financial data...')
gdpDf = pd.read_csv(f'./data/historicalGDP.csv', sep=';')
unemploymentDf = pd.read_csv(f'./data/historicalUnemployment.csv', sep=';')
interestRateDf = pd.read_csv(f'./data/historicalInterest.csv', sep=';')
gdpDf = interpolateTime(gdpDf)
unemploymentDf = interpolateTime(unemploymentDf)
interestRateDf = interpolateTime(interestRateDf)
aptDf['gdp'] = aptDf['soldDate'].apply(getValueFromTime, args=(gdpDf,))
aptDf['unemployment'] = aptDf['soldDate'].apply(getValueFromTime, args=(unemploymentDf,))
aptDf['interestRate'] = aptDf['soldDate'].apply(getValueFromTime, args=(interestRateDf,))
return aptDf
def interpolateTime(df):
df['date'] = pd.to_datetime(df['date'])
df = df.set_index('date')
df = df.resample('MS').mean()
df = df.interpolate(method='time')
return fixChange(df)
def getValueFromTime(datetime, dataDf):
# Get the value from the dataDf at the given datetime
# If the datetime is not in the dataDf, print the datetime and return '0'
# First, set the day of the datetime to the first day of the month
# parse datetime to enable replacement
datetime = pd.to_datetime(datetime)
datetime = datetime.replace(day=1)
try:
return dataDf.loc[datetime, 'value']
except KeyError:
# Try adding one month
nextMonth = datetime.month + 1
if nextMonth > 12:
datetime = datetime.replace(month=1)
datetime = datetime.replace(year=datetime.year + 1)
def fixChange(df):
# Set change to be the difference between the current and previous price
df['change'] = df['value'].diff()
# If the change is Nan set it to 0
df['change'] = df['change'].fillna(0)
return df
def cleanAddress(x):
# Remove "-" from the street
x = ''.join(x.split('-'))
# Remove all zero width spaces, non-breaking spaces and non-breaking hyphens
x = x.replace('\u200b', '')
x = x.replace('\u00a0', '')
x = x.replace('\u2011', '')
# Remove all soft hyphens
x = x.replace('\xad', '')
x = x.replace('\u200c', '')
x.strip()
return x
class AddressNotFound(Exception):
pass
def getCoordinatesFromAddress(streetName, number):
HOST_ADDRESS = '165.227.162.37'
HOST_PORT = '8080'
EMAIL = '[email protected]'
DOMAIN = HOST_ADDRESS + ':' + HOST_PORT
LOCATOR = Nominatim(user_agent=EMAIL, domain=DOMAIN, scheme='http', timeout=10)
number = str(int(float(number)))
address = f'{streetName} {number}, Stockholm'
if number == '0':
address = f'{streetName}, Stockholm'
location = LOCATOR.geocode(address)
if location is None:
raise AddressNotFound
else:
# Return with a precision of 6 decimals (accuracy of <1 meter)
lat = round(location.latitude, 6)
lon = round(location.longitude, 6)
return lat, lon
def dateToFloat(date):
year, month, day = str(date).split('-')
day = day.split(' ')[0]
return int(year) + int(month) / 12 + int(day) / 365
def normalize(x, minVal, maxVal, feature):
# Not fantastic
res = (float(x) - minVal) / (maxVal - minVal)
return min(max(res, 0), 1)
def normalizeData(df):
# Normalize select numerical values to a value between 0 and 1
print('Normalizing data...')
for feature, minMax in tqdm(featureToMinMax.items()):
min = minMax[0]
max = minMax[1]
if feature == 'soldDate':
df[feature] = df[feature].apply(lambda x: dateToFloat(x))
df[feature] = df[feature].apply(lambda x: normalize(x, min, max, feature))
return df
def parsePrice(price):
featureToMinMaxPrice = {
'price': (1.5e5, 7e7)
}
MIN = featureToMinMaxPrice['price'][0]
MAX = featureToMinMaxPrice['price'][1]
price = float(price)
price = price * (MAX - MIN) + MIN
return f'{addDotsToPrice(int(price))} SEK'
def addDotsToPrice(price):
# Takes an int like 1000000 and returns a string like 1.000.000
toReturn = ''
price = str(price)
for i, c in enumerate(price):
toReturn += c
if (len(price) - i) % 3 == 1 and i != len(price) - 1 and c != '-':
toReturn += '.'
return toReturn
def xgbFix(df):
features_to_categorical = ["streetName", "brf", "agency"]
features_to_float = ["number", "sqm", "rooms", "monthlyFee",
"monthlyCost", "floor", "yearBuilt", "gdp", "unemployment",
"interestRate", "lat", "lon", "soldDate"]
df[features_to_categorical] = df[features_to_categorical].astype("category")
df[features_to_float] = df[features_to_float].astype(float)
return df
model = downloadModel()
autoModel = downloadAutogluonModel()
def xgboostPred(df):
# Drop categorical features
df = df.drop(['streetName', 'brf', 'agency'], axis=1)
# Save first row as a numpy array
results = []
for _,row in df.iterrows():
input_list = row.to_numpy()
res = model.predict(np.asarray(input_list).reshape(1, -1))
results.append(res[0]) # This is not done in a good way
return results
def addExtraAgencyFun(df):
# Make 20 copies of the first row with the 20 different top agencies in Sweden
# Make a copy of the first row
firstRow = df.iloc[0]
# Make a list of the copies
rows = [firstRow] * len(topAgencies)
# Make a dataframe from the list
df2 = pd.DataFrame(rows)
# Add the top agencies to the dataframe
for i, agency in enumerate(topAgencies):
df2['agency'].iloc[i] = agency
# Concatenate the two dataframes
df = pd.concat([df, df2], ignore_index=True)
return df
def autoPred(df):
df = addExtraAgencyFun(df)
res = autoModel.predict(df)
# Convert to a list
res = res.tolist()
# Get the last 20 values
agencyResults = res[-20:]
res = res[:-20]
# Get the mean of the agencies
agencyToResult = {agency:result for agency, result in zip(topAgencies, agencyResults)}
for agency, result in agencyToResult.items():
print(agency, str(result))
# Get the top and bottom 3 agencies with the highest results
sortedAgencies = sorted(agencyToResult.items(), key=lambda x: x[1])
meanPrice = sum(agencyResults) / len(agencyResults)
top3 = sortedAgencies[-5:]
top3.reverse()
agencyString = parseAgencyResult(top3, meanPrice)
return res, agencyString
def parseAgencyResult(top3, meanPrice):
toReturn = 'To get the most money for your apartment, you should sell it with the help of one of these agencies:\n'
toReturn += 'Top 5:\n'
for agency, result in top3:
diff = result - meanPrice
toReturn += f'{agency}: {parsePrice(result)} ({parsePrice(diff)} above mean)\n'
return toReturn
def isValidInput(streetName, number, sqm, rooms, monthlyFee, monthlyCost, floor, yearBuilt):
# Street name is a string, all other values are numbers
if streetName == '':
return 'Street name is empty'
# If Street name contains numbers it should fail
if any(char.isdigit() for char in streetName):
return 'Only letters are allowed in street name'
toCheck = [number, sqm, rooms, monthlyFee, monthlyCost, floor, yearBuilt]
toCheckName = ['number', 'sqm', 'rooms', 'monthlyFee', 'monthlyCost', 'floor', 'yearBuilt']
for val, name in zip(toCheck, toCheckName):
MIN = featureToMinMax[name][0]
MAX = featureToMinMax[name][1]
if val < MIN:
return f'{featureToName.get(name)} is too low'
if val > MAX:
return f'{featureToName.get(name)} is too high'
return None
def getDates():
today = date.today()
# inAMonth = today + timedelta(days=30)
inAYear = today + timedelta(days=365)
lastYear = today - timedelta(days=365)
beforeUkraineWar = '2022-02-24'
threeYearsAgo = today - timedelta(days=365*3)
dateToExplanation = {
today.strftime("%Y-%m-%d") : 'today',
# inAMonth.strftime("%Y-%m-%d") : 'in a month',
inAYear.strftime("%Y-%m-%d") : 'in a year',
lastYear.strftime("%Y-%m-%d") : 'last year',
threeYearsAgo.strftime("%Y-%m-%d") : 'three years ago',
beforeUkraineWar : 'before Russia invaded Ukraine',
}
return dateToExplanation
def sthlm(streetName, number, sqm, rooms, monthlyFee, monthlyCost, floor, yearBuilt, auto):
inputErrors = isValidInput(streetName, number, sqm, rooms, monthlyFee, monthlyCost, floor, yearBuilt)
if inputErrors is not None:
return '0', '', '', inputErrors
lat, lon = getAddressInfo(streetName, number)
# If none
if lat is None or lon is None:
return '0', '', '', 'Address not found in the OpenStreetMap dataset (Nominatim), please try another address'
agency = 'Notar' # Make fun if categorical works
brf = 'BRF Kartboken 1' # TODO: remove
dates = getDates()
input_variables = pd.DataFrame(
columns=columnHeaders)
for soldDate in dates.keys():
# Parse the input so we can run it through the model
# Create a dataframe from the input values
input_variables = input_variables.append(
pd.DataFrame(
[[streetName,number,sqm,rooms,soldDate,monthlyFee,monthlyCost,floor,yearBuilt,brf,agency,lat,lon]], columns=columnHeaders))
df = populateApartmentData(input_variables)
df = normalizeData(df)
pricePred = None
agencyInfo = 'Please use AutoGluon instead of XGBoost to get information about agencies'
if auto:
pricePred, agencyInfo = autoPred(df)
else:
df = xgbFix(df)
pricePred = xgboostPred(df)
explanations = list(dates.values())
result = [] #
mainPred = None
mainExplanation = None
for i, pred in enumerate(pricePred):
explanation = explanations[i]
if i == 0:
mainExplanation = explanation
mainPred = pred
else:
diff = pred - mainPred
if diff > 0:
result.append(f'If sold {explanation} it would have been worth more: {parsePrice(pred)} (+{parsePrice(diff)})')
else:
result.append(f'If sold {explanation} it would have been worth less: {parsePrice(pred)} ({parsePrice(diff)})')
return f'Predicted price of the apartment {mainExplanation}: {parsePrice(mainPred)}', '\n'.join(result), agencyInfo, ''
# All features present in the sthlm dataset
numericalInputs = ['number', 'sqm','rooms', 'monthlyFee','monthlyCost','floor','yearBuilt']
inputs = [gr.inputs.Textbox(lines=1, label='streetName')]
# Generate the input form
for feature in numericalInputs:
minVal = featureToMinMax[feature][0]
maxVal = featureToMinMax[feature][1]
theLabel = f'{featureToName.get(feature)} (min: {minVal}, max: {maxVal})'
inputs.append(gr.inputs.Number(default=0, label=theLabel))
# Add a switch to choose between xgboost and autogluon
inputs.append(gr.inputs.Checkbox( label='Use AutoGluon instead of XGBoost', default=False))
# Create the interface
resultOutputs = [gr.outputs.Label(label='Price if sold today'), gr.outputs.Textbox(label='If sold at a different time'), gr.outputs.Textbox(label='Best agencies to use'), gr.outputs.Textbox(label='Error', type='error')]
demo = gr.Interface(
fn=sthlm,
title="Stockholm Housing Valuation",
description="Predict the price of an apartment in Stockholm\nTo get information about which agency to use, please select AutoGluon",
allow_flagging="never",
inputs=inputs,
outputs=resultOutputs)
demo.launch()
|