Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
from PIL import Image | |
import requests | |
import pandas as pd | |
import hopsworks | |
import joblib | |
project = hopsworks.login() | |
fs = project.get_feature_store() | |
mr = project.get_model_registry() | |
model = mr.get_model("titanic_modal", version=1) | |
model_dir = model.download() | |
model = joblib.load(model_dir + "/titanic_model.pkl") | |
df = pd | |
features = pd.read_csv( | |
"https://raw.githubusercontent.com/Nathanotal/remoteFiles/main/titanicCleaned.csv") | |
features = features.drop(columns=["survived"]) | |
featureLabels = features.columns | |
def titanic(input_list): | |
# 'res' is a list of predictions returned as the label. | |
res = model.predict(np.asarray(input_list).reshape(1, -1)) | |
# We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want | |
# the first element. | |
# Todo: survivor, "https://fakeface.rest/face/json?maximum_age=50&gender=female&minimum_age=49" | |
survivor_url = 'https://picsum.photos/200/300' | |
img = Image.open(requests.get(survivor_url, stream=True).raw) | |
return img | |
inputs = [] | |
for feature in featureLabels: | |
inputs.append(gr.inputs.Number(default=1.0, label=feature)) | |
demo = gr.Interface( | |
fn=titanic, | |
title="Titanic Survivor Predictive Analytics", | |
description="Experiment with person features to predict which survivor it is.", | |
allow_flagging="never", | |
inputs=inputs, | |
outputs=gr.Image(type="pil")) | |
demo.launch() | |