Nathanotal commited on
Commit
ad32c72
·
1 Parent(s): 33379dc
Files changed (1) hide show
  1. app.py +35 -15
app.py CHANGED
@@ -17,24 +17,31 @@ model_dir = model.download()
17
  model = joblib.load(model_dir + "/titanic_model.pkl")
18
 
19
  df = pd
20
- features = pd.read_csv(
21
- "https://raw.githubusercontent.com/Nathanotal/remoteFiles/main/titanicCleaned.csv")
22
- features = features.drop(columns=["survived"])
23
- featureLabels = features.columns
 
 
24
 
25
 
26
- def titanic(input1, input2, input3, input4, input5, input6, input7, input8):
27
  input_list = []
28
 
29
- # Add all inputs to the input_list
30
- input_list.append(input1)
31
- input_list.append(input2)
32
- input_list.append(input3)
33
- input_list.append(input4)
34
- input_list.append(input5)
35
- input_list.append(input6)
36
- input_list.append(input7)
37
- input_list.append(input8)
 
 
 
 
 
38
 
39
  # 'res' is a list of predictions returned as the label.
40
  res = model.predict(np.asarray(input_list).reshape(1, -1))
@@ -64,8 +71,21 @@ def titanic(input1, input2, input3, input4, input5, input6, input7, input8):
64
 
65
 
66
  inputs = []
 
 
 
 
67
  for feature in featureLabels:
68
- inputs.append(gr.inputs.Number(default=1.0, label=feature))
 
 
 
 
 
 
 
 
 
69
 
70
  demo = gr.Interface(
71
  fn=titanic,
 
17
  model = joblib.load(model_dir + "/titanic_model.pkl")
18
 
19
  df = pd
20
+ # features = pd.read_csv(
21
+ # "https://raw.githubusercontent.com/Nathanotal/remoteFiles/main/titanicCleaned.csv")
22
+ # features = features.drop(columns=["survived"])
23
+ # featureLabels = features.columns
24
+ featureLabels = ["Pclass", "Name", "Sex", "Age", "SibSp",
25
+ "Parch", "Ticket", "Fare", "Cabin", "Embarked"]
26
 
27
 
28
+ def titanic(Pclass, Sex, Age, SibSp, Parch, Fare, Cabin, Embarked):
29
  input_list = []
30
 
31
+ sexToFeature = {
32
+ "male": 0,
33
+ "female": 1,
34
+ }
35
+
36
+ # Convert inputs to features
37
+ input_list.append(Pclass) # Todo: Convert to feature
38
+ input_list.append(sexToFeature.get(Sex)) # Todo: Convert to feature
39
+ input_list.append(Age) # !
40
+ input_list.append(SibSp) # Todo: Convert to feature
41
+ input_list.append(Parch) # Todo: Convert to feature
42
+ input_list.append(Fare) # Todo: Convert to feature
43
+ input_list.append(Cabin) # Todo: Convert to feature
44
+ input_list.append(Embarked) # Todo: Convert to feature
45
 
46
  # 'res' is a list of predictions returned as the label.
47
  res = model.predict(np.asarray(input_list).reshape(1, -1))
 
71
 
72
 
73
  inputs = []
74
+ numericalInputs = ["age", "sibsp", "parch", "fare", "pclass"]
75
+ worthlessInputs = ["name", "ticket"]
76
+ categoricalInputs = ["sex", "embarked", "cabin"]
77
+
78
  for feature in featureLabels:
79
+ if feature in numericalInputs:
80
+ inputs.append(gr.inputs.Number(default=1.0, label=feature))
81
+ elif feature in worthlessInputs:
82
+ pass
83
+ # inputs.append(gr.Inputs.Textbox(default='text', label=feature))
84
+ elif feature in categoricalInputs:
85
+ inputs.append(gr.inputs.Dropdown(
86
+ choices=["a", "b"], default="a", label=feature))
87
+ else:
88
+ raise Exception(f'Feature: "{feature}" not found')
89
 
90
  demo = gr.Interface(
91
  fn=titanic,