File size: 2,555 Bytes
bbf7972
 
 
 
b2bf049
eea8dd3
a1d5893
0a72c82
 
 
 
 
a1d5893
 
 
 
 
 
 
 
0a72c82
 
 
 
 
 
1d564c1
b2bf049
1d564c1
 
bbf7972
b2bf049
1d564c1
 
 
a1d5893
08b115a
a1d5893
08b115a
a1d5893
 
 
bbf7972
b2bf049
3b9bdb1
 
a1d5893
a4f12b6
 
3b9bdb1
 
 
 
a1d5893
a4f12b6
3b9bdb1
 
 
a1d5893
a4f12b6
3b9bdb1
 
 
 
a1d5893
3b9bdb1
 
 
a1d5893
3b9bdb1
bbf7972
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import gradio as gr
from PIL import Image
import hopsworks

# If You want to inspect the results for the synthetic data set SYNTHETIC = TRUE
SYNTHETIC = False

latestSurvivorImage = 'latest_survivor_pred'
latestSurvivorPred = 'latest_survivor_label_pred'
latestSurvivorLabel = 'latest_survivor_label_actual'
recentHistory = 'df_recent_titanic'
confusionMatrix = 'confusion_matrix'

if SYNTHETIC:
    latestSurvivorImage += '_synthetic'
    latestSurvivorPred += '_synthetic'
    latestSurvivorLabel += '_synthetic'
    recentHistory += '_synthetic'
    confusionMatrix += '_synthetic'

latestSurvivorImage += '.png'
latestSurvivorPred += '.png'
latestSurvivorLabel += '.png'
recentHistory += '.png'
confusionMatrix += '.png'

with gr.Blocks() as demo:
    # Login to hopsworks
    project = hopsworks.login()
    fs = project.get_feature_store()

    # Download all the necessary files
    dataset_api = project.get_dataset_api()

    print('Downloading...')
    dataset_api.download(f"Resources/images/{latestSurvivorImage}")
    dataset_api.download(
        f"Resources/images/{latestSurvivorPred}")
    dataset_api.download(
        f"Resources/images/{latestSurvivorLabel}")
    dataset_api.download(f"Resources/images/{recentHistory}")
    dataset_api.download(f"Resources/images/{confusionMatrix}")

    # Arrange the images
    with gr.Column():
        gr.Label("Today's passenger")
        input_img = gr.Image(f"{latestSurvivorImage}",
                             elem_id="passenger-img").style(
            height='100', rounded=False)
        with gr.Row():
            with gr.Column():
                gr.Label("Today's predicted survival")
                input_img = gr.Image(
                    f"{latestSurvivorPred}", elem_id="predicted-img").style(
                    height='100', rounded=False)
            with gr.Column():
                gr.Label("Today's actual survival")
                input_img = gr.Image(
                    f"{latestSurvivorLabel}", elem_id="actual-img").style(
                    height='100', rounded=False)
        with gr.Row():
            with gr.Column():
                gr.Label("Recent Prediction History")
                input_img = gr.Image(
                    f"{recentHistory}", elem_id="recent-predictions")
            with gr.Column():
                gr.Label(
                    "Confusion Maxtrix with Historical Prediction Performance")
                input_img = gr.Image(f"{confusionMatrix}",
                                     elem_id="confusion-matrix")

demo.launch()