Nathanwit commited on
Commit
bd38d64
Β·
1 Parent(s): 4878f59
Files changed (1) hide show
  1. app2.py +0 -50
app2.py DELETED
@@ -1,50 +0,0 @@
1
- import torch
2
- import gradio as gr
3
- import re
4
- from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel
5
-
6
- device='cpu'
7
- encoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
8
- decoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
9
- model_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
10
- feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint)
11
- tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint)
12
- model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device)
13
-
14
- def predict(image,max_length=64, num_beams=4):
15
- image = image.convert('RGB')
16
- image = feature_extractor(image, return_tensors="pt").pixel_values.to(device)
17
- clean_text = lambda x: x.replace('<|endoftext|>','').split('\n')[0]
18
- caption_ids = model.generate(image, max_length = max_length)[0]
19
- caption_text = clean_text(tokenizer.decode(caption_ids))
20
- return caption_text
21
-
22
- def set_example_image(example: list) -> dict:
23
- return gr.Image.update(value=example[0])
24
- css = '''
25
- h1#title {
26
- text-align: center;
27
- }
28
- h3#header {
29
- text-align: center;
30
- }
31
- img#overview {
32
- max-width: 800px;
33
- max-height: 600px;
34
- }
35
- img#style-image {
36
- max-width: 1000px;
37
- max-height: 600px;
38
- }
39
- '''
40
- demo = gr.Blocks(css=css)
41
- with demo:
42
- gr.Markdown('''<h1 id="title">Image Caption πŸ–ΌοΈ</h1>''')
43
- gr.Markdown('''Made by : Shreyas Dixit''')
44
- with gr.Column():
45
- input = gr.inputs.Image(label="Upload your Image", type = 'pil', optional=True)
46
- output = gr.outputs.Textbox(type="auto",label="Captions")
47
- btn = gr.Button("Genrate Caption")
48
- btn.click(fn=predict, inputs=input, outputs=output)
49
-
50
- demo.launch()