File size: 11,905 Bytes
5fbe98e
cc6e31a
5fbe98e
75db765
 
 
 
5fbe98e
 
75db765
 
5fbe98e
 
75db765
5fbe98e
75db765
 
5fbe98e
 
 
75db765
 
5fbe98e
 
75db765
 
 
5fbe98e
 
75db765
5fbe98e
75db765
 
 
5fbe98e
 
 
 
 
 
cc6e31a
5fbe98e
 
 
 
 
 
 
 
 
75db765
5fbe98e
c87a258
6317aac
 
 
 
75db765
 
 
 
 
c87a258
 
75db765
 
 
 
 
 
 
 
 
 
5fbe98e
 
 
75db765
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b3ca21
5fbe98e
75db765
 
 
 
 
 
 
c87a258
 
 
2956d04
75db765
c87a258
 
 
2956d04
75db765
 
 
 
5fbe98e
 
 
75db765
cc6e31a
 
 
 
 
 
 
 
5fbe98e
66cd489
55278bb
5fbe98e
 
b48c540
5fbe98e
 
 
 
 
 
 
 
 
66cd489
 
5fbe98e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import gradio as gr
from model import models
from multit2i import (
    load_models, infer_fn, infer_rand_fn, save_gallery,
    change_model, warm_model, get_model_info_md, loaded_models,
    get_positive_prefix, get_positive_suffix, get_negative_prefix, get_negative_suffix,
    get_recom_prompt_type, set_recom_prompt_preset, get_tag_type,
)
from tagger.tagger import (
    predict_tags_wd, remove_specific_prompt, convert_danbooru_to_e621_prompt,
    insert_recom_prompt, compose_prompt_to_copy,
)
from tagger.fl2sd3longcap import predict_tags_fl2_sd3
from tagger.v2 import V2_ALL_MODELS, v2_random_prompt
from tagger.utils import (
    V2_ASPECT_RATIO_OPTIONS, V2_RATING_OPTIONS,
    V2_LENGTH_OPTIONS, V2_IDENTITY_OPTIONS,
)


max_images = 8
load_models(models)

css = """

.model_info { text-align: center; }

.output { width=112px; height=112px; !important; }

.gallery { width=100%; min_height=768px; !important; }

"""

with gr.Blocks(theme="NoCrypt/miku@>=1.2.2", fill_width=True, css=css) as demo:
    with gr.Column(): 
        with gr.Group():
            model_name = gr.Dropdown(label="Select Model", choices=list(loaded_models.keys()), value=list(loaded_models.keys())[0], allow_custom_value=True)
            model_info = gr.Markdown(value=get_model_info_md(list(loaded_models.keys())[0]), elem_classes="model_info")
        with gr.Group():
            with gr.Accordion("Prompt from Image File", open=False):
                tagger_image = gr.Image(label="Input image", type="pil", sources=["upload", "clipboard"], height=256)
                with gr.Accordion(label="Advanced options", open=False):
                    tagger_general_threshold = gr.Slider(label="Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.01, interactive=True)
                    tagger_character_threshold = gr.Slider(label="Character threshold", minimum=0.0, maximum=1.0, value=0.8, step=0.01, interactive=True)
                    tagger_tag_type = gr.Radio(label="Convert tags to", info="danbooru for common, e621 for Pony.", choices=["danbooru", "e621"], value="danbooru")
                    tagger_recom_prompt = gr.Radio(label="Insert reccomended prompt", choices=["None", "Animagine", "Pony"], value="None", interactive=True)  
                    tagger_keep_tags = gr.Radio(label="Remove tags leaving only the following", choices=["body", "dress", "all"], value="all")
                tagger_algorithms = gr.CheckboxGroup(["Use WD Tagger", "Use Florence-2-SD3-Long-Captioner"], label="Algorithms", value=["Use WD Tagger"])
                tagger_generate_from_image = gr.Button(value="Generate Tags from Image")
            with gr.Row():
                v2_character = gr.Textbox(label="Character", placeholder="hatsune miku", scale=2)
                v2_series = gr.Textbox(label="Series", placeholder="vocaloid", scale=2)
                random_prompt = gr.Button(value="Extend Prompt 🎲", size="sm", scale=1)
                clear_prompt = gr.Button(value="Clear Prompt πŸ—‘οΈ", size="sm", scale=1)
            prompt = gr.Text(label="Prompt", lines=2, max_lines=8, placeholder="1girl, solo, ...", show_copy_button=True)
            neg_prompt = gr.Text(label="Negative Prompt", lines=1, max_lines=8, placeholder="", visible=False)
            with gr.Accordion("Advanced options", open=False):
                width = gr.Number(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
                height = gr.Number(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
                steps = gr.Number(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
                cfg = gr.Number(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
            with gr.Accordion("Recommended Prompt", open=False):
                recom_prompt_preset = gr.Radio(label="Set Presets", choices=get_recom_prompt_type(), value="Common")
                with gr.Row():
                    positive_prefix = gr.CheckboxGroup(label="Use Positive Prefix", choices=get_positive_prefix(), value=[])
                    positive_suffix = gr.CheckboxGroup(label="Use Positive Suffix", choices=get_positive_suffix(), value=["Common"])
                    negative_prefix = gr.CheckboxGroup(label="Use Negative Prefix", choices=get_negative_prefix(), value=[])
                    negative_suffix = gr.CheckboxGroup(label="Use Negative Suffix", choices=get_negative_suffix(), value=["Common"])
            with gr.Accordion("Prompt Transformer", open=False):
                v2_rating = gr.Radio(label="Rating", choices=list(V2_RATING_OPTIONS), value="sfw")
                v2_aspect_ratio = gr.Radio(label="Aspect ratio", info="The aspect ratio of the image.", choices=list(V2_ASPECT_RATIO_OPTIONS), value="square", visible=False)
                v2_length = gr.Radio(label="Length", info="The total length of the tags.", choices=list(V2_LENGTH_OPTIONS), value="long")
                v2_identity = gr.Radio(label="Keep identity", info="How strictly to keep the identity of the character or subject. If you specify the detail of subject in the prompt, you should choose `strict`. Otherwise, choose `none` or `lax`. `none` is very creative but sometimes ignores the input prompt.", choices=list(V2_IDENTITY_OPTIONS), value="lax")                    
                v2_ban_tags = gr.Textbox(label="Ban tags", info="Tags to ban from the output.", placeholder="alternate costumen, ...", value="censored")
                v2_tag_type = gr.Radio(label="Tag Type", info="danbooru for common, e621 for Pony.", choices=["danbooru", "e621"], value="danbooru", visible=False)
                v2_model = gr.Dropdown(label="Model", choices=list(V2_ALL_MODELS.keys()), value=list(V2_ALL_MODELS.keys())[0])
                v2_copy = gr.Button(value="Copy to clipboard", size="sm", interactive=False)
        image_num = gr.Slider(label="Number of images", minimum=1, maximum=max_images, value=1, step=1, interactive=True, scale=1)
        with gr.Row():
            run_button = gr.Button("Generate Image", scale=6)
            random_button = gr.Button("Random Model 🎲", scale=3)
            stop_button = gr.Button('Stop', interactive=False, scale=1)
    with gr.Column(): 
        with gr.Group():
            with gr.Row():
                output = [gr.Image(label='', elem_classes="output", type="filepath", format=".png",
                          show_download_button=True, show_share_button=False, show_label=False,
                          interactive=False, min_width=80, visible=True) for _ in range(max_images)]
        with gr.Group():
            results = gr.Gallery(label="Gallery", elem_classes="gallery", interactive=False, show_download_button=True, show_share_button=False,
                                 container=True, format="png", object_fit="cover", columns=2, rows=2)
            image_files = gr.Files(label="Download", interactive=False)
            clear_results = gr.Button("Clear Gallery / Download πŸ—‘οΈ")
    with gr.Column(): 
        examples = gr.Examples(
            examples = [
                ["souryuu asuka langley, 1girl, neon genesis evangelion, plugsuit, pilot suit, red bodysuit, sitting, crossing legs, black eye patch, cat hat, throne, symmetrical, looking down, from bottom, looking at viewer, outdoors"],
                ["sailor moon, magical girl transformation, sparkles and ribbons, soft pastel colors, crescent moon motif, starry night sky background, shoujo manga style"],
                ["kafuu chino, 1girl, solo"],
                ["1girl"],
                ["beautiful sunset"],
            ],
            inputs=[prompt],
        )
        gr.Markdown(
            f"""This demo was created in reference to the following demos.<br>

    [Nymbo/Flood](https://huggingface.co/spaces/Nymbo/Flood), 

    [Yntec/ToyWorldXL](https://huggingface.co/spaces/Yntec/ToyWorldXL), 

    [Yntec/Diffusion80XX](https://huggingface.co/spaces/Yntec/Diffusion80XX).

                """
        )
        gr.DuplicateButton(value="Duplicate Space")
        gr.Markdown(f"Just a few edits to *model.py* are all it takes to complete your own collection.")

    gr.on(triggers=[run_button.click, prompt.submit, random_button.click], fn=lambda: gr.update(interactive=True), inputs=None, outputs=stop_button, show_api=False)
    model_name.change(change_model, [model_name], [model_info], queue=False, show_api=False)\
    .success(warm_model, [model_name], None, queue=True, show_api=False)
    for i, o in enumerate(output):
        img_i = gr.Number(i, visible=False)
        image_num.change(lambda i, n: gr.update(visible = (i < n)), [img_i, image_num], o, show_api=False)
        gen_event = gr.on(triggers=[run_button.click, prompt.submit],
         fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, l1, l2, l3, l4: infer_fn(m, t1, t2, n1, n2, n3, n4, l1, l2, l3, l4) if (i < n) else None,
         inputs=[img_i, image_num, model_name, prompt, neg_prompt, height, width, steps, cfg,
                  positive_prefix, positive_suffix, negative_prefix, negative_suffix],
         outputs=[o], queue=True, show_api=False)
        gen_event2 = gr.on(triggers=[random_button.click],
         fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, l1, l2, l3, l4: infer_rand_fn(m, t1, t2, n1, n2, n3, n4, l1, l2, l3, l4) if (i < n) else None,
         inputs=[img_i, image_num, model_name, prompt, neg_prompt, height, width, steps, cfg,
                  positive_prefix, positive_suffix, negative_prefix, negative_suffix],
         outputs=[o], queue=True, show_api=False)
        o.change(save_gallery, [o, results], [results, image_files], show_api=False)
        stop_button.click(lambda: gr.update(interactive=False), None, stop_button, cancels=[gen_event, gen_event2], show_api=False)

    clear_prompt.click(lambda: None, None, [prompt], queue=False, show_api=False)
    clear_results.click(lambda: (None, None), None, [results, image_files], queue=False, show_api=False)
    recom_prompt_preset.change(set_recom_prompt_preset, [recom_prompt_preset],
     [positive_prefix, positive_suffix, negative_prefix, negative_suffix], queue=False, show_api=False)

    random_prompt.click(
        v2_random_prompt, [prompt, v2_series, v2_character, v2_rating, v2_aspect_ratio, v2_length,
          v2_identity, v2_ban_tags, v2_model], [prompt, v2_series, v2_character], show_api=False,
    ).success(
        get_tag_type, [positive_prefix, positive_suffix, negative_prefix, negative_suffix], [v2_tag_type], queue=False, show_api=False
    ).success(
        convert_danbooru_to_e621_prompt, [prompt, v2_tag_type], [prompt], queue=False, show_api=False,
    )
    tagger_generate_from_image.click(
            lambda: ("", "", ""), None, [v2_series, v2_character, prompt], queue=False, show_api=False,
    ).success(
        predict_tags_wd,
        [tagger_image, prompt, tagger_algorithms, tagger_general_threshold, tagger_character_threshold],
        [v2_series, v2_character, prompt, v2_copy],
        show_api=False,
    ).success(
        predict_tags_fl2_sd3, [tagger_image, prompt, tagger_algorithms], [prompt], show_api=False,
    ).success(
        remove_specific_prompt, [prompt, tagger_keep_tags], [prompt], queue=False, show_api=False,
    ).success(
        convert_danbooru_to_e621_prompt, [prompt, tagger_tag_type], [prompt], queue=False, show_api=False,
    ).success(
        insert_recom_prompt, [prompt, neg_prompt, tagger_recom_prompt], [prompt, neg_prompt], queue=False, show_api=False,
    ).success(
        compose_prompt_to_copy, [v2_character, v2_series, prompt], [prompt], queue=False, show_api=False,
    )

demo.queue()
demo.launch()