from transformers import AutoProcessor, AutoModelForCausalLM import spaces import re from PIL import Image import torch import subprocess subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) device = "cuda" if torch.cuda.is_available() else "cpu" fl_model = AutoModelForCausalLM.from_pretrained('gokaygokay/Florence-2-SD3-Captioner', trust_remote_code=True).to(device).eval() fl_processor = AutoProcessor.from_pretrained('gokaygokay/Florence-2-SD3-Captioner', trust_remote_code=True) def fl_modify_caption(caption: str) -> str: """ Removes specific prefixes from captions if present, otherwise returns the original caption. Args: caption (str): A string containing a caption. Returns: str: The caption with the prefix removed if it was present, or the original caption. """ # Define the prefixes to remove prefix_substrings = [ ('captured from ', ''), ('captured at ', '') ] # Create a regex pattern to match any of the prefixes pattern = '|'.join([re.escape(opening) for opening, _ in prefix_substrings]) replacers = {opening.lower(): replacer for opening, replacer in prefix_substrings} # Function to replace matched prefix with its corresponding replacement def replace_fn(match): return replacers[match.group(0).lower()] # Apply the regex to the caption modified_caption = re.sub(pattern, replace_fn, caption, count=1, flags=re.IGNORECASE) # If the caption was modified, return the modified version; otherwise, return the original return modified_caption if modified_caption != caption else caption @spaces.GPU def fl_run_example(image): task_prompt = "" prompt = task_prompt + "Describe this image in great detail." # Ensure the image is in RGB mode if image.mode != "RGB": image = image.convert("RGB") inputs = fl_processor(text=prompt, images=image, return_tensors="pt").to(device) generated_ids = fl_model.generate( input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, num_beams=3 ) generated_text = fl_processor.batch_decode(generated_ids, skip_special_tokens=False)[0] parsed_answer = fl_processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height)) return fl_modify_caption(parsed_answer[""]) def predict_tags_fl2_sd3(image: Image.Image, input_tags: str, algo: list[str]): def to_list(s): return [x.strip() for x in s.split(",") if not s == ""] def list_uniq(l): return sorted(set(l), key=l.index) if not "Use Florence-2-SD3-Long-Captioner" in algo: return input_tags tag_list = list_uniq(to_list(input_tags) + to_list(fl_run_example(image) + ", ")) tag_list.remove("") return ", ".join(tag_list)