sentiments
47f3322
raw
history blame
705 Bytes
import streamlit as st #Web App
from main import classify
#title
st.title("Easy OCR - Extract Text from Images")
#subtitle
st.markdown("## Optical Character Recognition - Using `easyocr`, `streamlit` - hosted on 🤗 Spaces")
input_sentences = st.text_area("Sentences", value="", height=200)
data = input_sentences.split('\n')
#if st.button("Classify"):
for i in data:
j = classify(i)[0]
sentiment = j['label'] == 'POS'
confidence = j['score']
st.write(f"{i} :: Classification - {'positive' if sentiment else 'negative'} with confidence {confidence}")
st.markdown("Link to the app - [image-to-text-app on 🤗 Spaces](https://huggingface.co/spaces/Amrrs/image-to-text-app)")