readme update
Browse files
README.md
CHANGED
@@ -16,16 +16,16 @@ pinned: false
|
|
16 |
|
17 |
## Metric Description
|
18 |
|
19 |
-
This metrics computes the expected calibration error (ECE).
|
20 |
-
|
21 |
-
https://torchmetrics.readthedocs.io/en/stable/classification/calibration_error.html
|
22 |
|
23 |
## How to Use
|
24 |
|
25 |
### Inputs
|
26 |
*List all input arguments in the format below*
|
27 |
-
- **predictions** *(float32): predictions (after softmax). They must have a shape (N,C
|
28 |
-
- **references** *(int64): reference for each prediction, with a shape (N,...)
|
|
|
29 |
|
30 |
### Output Values
|
31 |
|
@@ -50,6 +50,24 @@ print(results)
|
|
50 |
|
51 |
## Citation
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
```bibtex
|
54 |
@inproceedings{NEURIPS2019_f8c0c968,
|
55 |
author = {Kumar, Ananya and Liang, Percy S and Ma, Tengyu},
|
@@ -62,3 +80,14 @@ print(results)
|
|
62 |
year = {2019}
|
63 |
}
|
64 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
## Metric Description
|
18 |
|
19 |
+
This metrics computes the expected calibration error (ECE). ECE evaluates how well a model is calibrated, i.e. how well its output probabilities match the actual ground truth distribution. It measures the $$L^p$$ norm difference between a model’s posterior and the true likelihood of being correct.
|
20 |
+
This module directly calls the [torchmetrics package implementation](https://torchmetrics.readthedocs.io/en/stable/classification/calibration_error.html), allowing to use its flexible arguments.
|
|
|
21 |
|
22 |
## How to Use
|
23 |
|
24 |
### Inputs
|
25 |
*List all input arguments in the format below*
|
26 |
+
- **predictions** *(float32): predictions (after softmax). They must have a shape (N,C) if multiclass, or (N,...) if binary;*
|
27 |
+
- **references** *(int64): reference for each prediction, with a shape (N,...);*
|
28 |
+
- **kwargs** *arguments to pass to the [ece](https://torchmetrics.readthedocs.io/en/stable/classification/calibration_error.html) methods.*
|
29 |
|
30 |
### Output Values
|
31 |
|
|
|
50 |
|
51 |
## Citation
|
52 |
|
53 |
+
```bibtex
|
54 |
+
@InProceedings{pmlr-v70-guo17a,
|
55 |
+
title = {On Calibration of Modern Neural Networks},
|
56 |
+
author = {Chuan Guo and Geoff Pleiss and Yu Sun and Kilian Q. Weinberger},
|
57 |
+
booktitle = {Proceedings of the 34th International Conference on Machine Learning},
|
58 |
+
pages = {1321--1330},
|
59 |
+
year = {2017},
|
60 |
+
editor = {Precup, Doina and Teh, Yee Whye},
|
61 |
+
volume = {70},
|
62 |
+
series = {Proceedings of Machine Learning Research},
|
63 |
+
month = {06--11 Aug},
|
64 |
+
publisher = {PMLR},
|
65 |
+
pdf = {http://proceedings.mlr.press/v70/guo17a/guo17a.pdf},
|
66 |
+
url = {https://proceedings.mlr.press/v70/guo17a.html},
|
67 |
+
}
|
68 |
+
|
69 |
+
```
|
70 |
+
|
71 |
```bibtex
|
72 |
@inproceedings{NEURIPS2019_f8c0c968,
|
73 |
author = {Kumar, Ananya and Liang, Percy S and Ma, Tengyu},
|
|
|
80 |
year = {2019}
|
81 |
}
|
82 |
```
|
83 |
+
|
84 |
+
```bibtex
|
85 |
+
@InProceedings{Nixon_2019_CVPR_Workshops,
|
86 |
+
author = {Nixon, Jeremy and Dusenberry, Michael W. and Zhang, Linchuan and Jerfel, Ghassen and Tran, Dustin},
|
87 |
+
title = {Measuring Calibration in Deep Learning},
|
88 |
+
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
|
89 |
+
month = {June},
|
90 |
+
year = {2019},
|
91 |
+
url = {https://openaccess.thecvf.com/content_CVPRW_2019/html/Uncertainty_and_Robustness_in_Deep_Visual_Learning/Nixon_Measuring_Calibration_in_Deep_Learning_CVPRW_2019_paper.html},
|
92 |
+
}
|
93 |
+
```
|