Natooz commited on
Commit
3424411
·
unverified ·
1 Parent(s): 65c885b

readme update

Browse files
Files changed (1) hide show
  1. README.md +34 -5
README.md CHANGED
@@ -16,16 +16,16 @@ pinned: false
16
 
17
  ## Metric Description
18
 
19
- This metrics computes the expected calibration error (ECE).
20
- It directly calls the torchmetrics package:
21
- https://torchmetrics.readthedocs.io/en/stable/classification/calibration_error.html
22
 
23
  ## How to Use
24
 
25
  ### Inputs
26
  *List all input arguments in the format below*
27
- - **predictions** *(float32): predictions (after softmax). They must have a shape (N,C,...) if multiclass, or (N,...) if binary.*
28
- - **references** *(int64): reference for each prediction, with a shape (N,...).*
 
29
 
30
  ### Output Values
31
 
@@ -50,6 +50,24 @@ print(results)
50
 
51
  ## Citation
52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53
  ```bibtex
54
  @inproceedings{NEURIPS2019_f8c0c968,
55
  author = {Kumar, Ananya and Liang, Percy S and Ma, Tengyu},
@@ -62,3 +80,14 @@ print(results)
62
  year = {2019}
63
  }
64
  ```
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
  ## Metric Description
18
 
19
+ This metrics computes the expected calibration error (ECE). ECE evaluates how well a model is calibrated, i.e. how well its output probabilities match the actual ground truth distribution. It measures the $$L^p$$ norm difference between a model’s posterior and the true likelihood of being correct.
20
+ This module directly calls the [torchmetrics package implementation](https://torchmetrics.readthedocs.io/en/stable/classification/calibration_error.html), allowing to use its flexible arguments.
 
21
 
22
  ## How to Use
23
 
24
  ### Inputs
25
  *List all input arguments in the format below*
26
+ - **predictions** *(float32): predictions (after softmax). They must have a shape (N,C) if multiclass, or (N,...) if binary;*
27
+ - **references** *(int64): reference for each prediction, with a shape (N,...);*
28
+ - **kwargs** *arguments to pass to the [ece](https://torchmetrics.readthedocs.io/en/stable/classification/calibration_error.html) methods.*
29
 
30
  ### Output Values
31
 
 
50
 
51
  ## Citation
52
 
53
+ ```bibtex
54
+ @InProceedings{pmlr-v70-guo17a,
55
+ title = {On Calibration of Modern Neural Networks},
56
+ author = {Chuan Guo and Geoff Pleiss and Yu Sun and Kilian Q. Weinberger},
57
+ booktitle = {Proceedings of the 34th International Conference on Machine Learning},
58
+ pages = {1321--1330},
59
+ year = {2017},
60
+ editor = {Precup, Doina and Teh, Yee Whye},
61
+ volume = {70},
62
+ series = {Proceedings of Machine Learning Research},
63
+ month = {06--11 Aug},
64
+ publisher = {PMLR},
65
+ pdf = {http://proceedings.mlr.press/v70/guo17a/guo17a.pdf},
66
+ url = {https://proceedings.mlr.press/v70/guo17a.html},
67
+ }
68
+
69
+ ```
70
+
71
  ```bibtex
72
  @inproceedings{NEURIPS2019_f8c0c968,
73
  author = {Kumar, Ananya and Liang, Percy S and Ma, Tengyu},
 
80
  year = {2019}
81
  }
82
  ```
83
+
84
+ ```bibtex
85
+ @InProceedings{Nixon_2019_CVPR_Workshops,
86
+ author = {Nixon, Jeremy and Dusenberry, Michael W. and Zhang, Linchuan and Jerfel, Ghassen and Tran, Dustin},
87
+ title = {Measuring Calibration in Deep Learning},
88
+ booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
89
+ month = {June},
90
+ year = {2019},
91
+ url = {https://openaccess.thecvf.com/content_CVPRW_2019/html/Uncertainty_and_Robustness_in_Deep_Visual_Learning/Nixon_Measuring_Calibration_in_Deep_Learning_CVPRW_2019_paper.html},
92
+ }
93
+ ```