fix input format conversion
Browse files
README.md
CHANGED
@@ -24,8 +24,8 @@ https://torchmetrics.readthedocs.io/en/stable/classification/calibration_error.h
|
|
24 |
|
25 |
### Inputs
|
26 |
*List all input arguments in the format below*
|
27 |
-
- **
|
28 |
-
- **references** *(
|
29 |
|
30 |
### Output Values
|
31 |
|
|
|
24 |
|
25 |
### Inputs
|
26 |
*List all input arguments in the format below*
|
27 |
+
- **predictions** *(float32): predictions (after softmax). They must have a shape (N,C,...) if multiclass, or (N,...) if binary.*
|
28 |
+
- **references** *(int64): reference for each prediction, with a shape (N,...).*
|
29 |
|
30 |
### Output Values
|
31 |
|
ece.py
CHANGED
@@ -16,7 +16,7 @@ from typing import Dict
|
|
16 |
|
17 |
import evaluate
|
18 |
import datasets
|
19 |
-
from torch import
|
20 |
from torchmetrics.functional.classification.calibration_error import (
|
21 |
binary_calibration_error,
|
22 |
multiclass_calibration_error,
|
@@ -106,10 +106,8 @@ class ECE(evaluate.Metric):
|
|
106 |
be used as "num_classes".
|
107 |
"""
|
108 |
# Convert the input
|
109 |
-
|
110 |
-
|
111 |
-
if isinstance(references, ndarray):
|
112 |
-
references = from_numpy(references)
|
113 |
|
114 |
max_label = amax(references, list(range(references.dim())))
|
115 |
if max_label > 1 and "num_classes" not in kwargs:
|
|
|
16 |
|
17 |
import evaluate
|
18 |
import datasets
|
19 |
+
from torch import Tensor, LongTensor, amax
|
20 |
from torchmetrics.functional.classification.calibration_error import (
|
21 |
binary_calibration_error,
|
22 |
multiclass_calibration_error,
|
|
|
106 |
be used as "num_classes".
|
107 |
"""
|
108 |
# Convert the input
|
109 |
+
predictions = Tensor(predictions)
|
110 |
+
references = LongTensor(references)
|
|
|
|
|
111 |
|
112 |
max_label = amax(references, list(range(references.dim())))
|
113 |
if max_label > 1 and "num_classes" not in kwargs:
|