Spaces:
Runtime error
Runtime error
from transformers import pipeline, BlipForConditionalGeneration, BlipProcessor, AutoTokenizer, AutoModelForSeq2SeqLM | |
import torchaudio | |
from torchaudio.transforms import Resample | |
import torch | |
import gradio as gr | |
# Initialize TTS model from Hugging Face | |
tts_model_name = "suno/bark" | |
tts = pipeline(task="text-to-speech", model=tts_model_name) | |
# Initialize Blip model for image captioning | |
model_id = "dblasko/blip-dalle3-img2prompt" | |
blip_model = BlipForConditionalGeneration.from_pretrained(model_id) | |
blip_processor = BlipProcessor.from_pretrained(model_id) | |
def generate_caption(image): | |
# Generate caption from image using Blip model | |
inputs = blip_processor(images=image, return_tensors="pt") | |
pixel_values = inputs.pixel_values | |
generated_ids = blip_model.generate(pixel_values=pixel_values, max_length=50) | |
generated_caption = blip_processor.batch_decode(generated_ids, skip_special_tokens=True, temperature=0.8, top_k=40, top_p=0.9)[0] | |
# Use TTS model to convert generated caption to audio | |
audio_output = tts(generated_caption) | |
audio_path = "generated_audio_resampled.wav" | |
torchaudio.save(audio_path, torch.tensor(audio_output[0]), audio_output["sampling_rate"]) | |
return generated_caption, audio_path | |
# Create a Gradio interface with an image input, a textbox output, a button, and an audio player | |
demo = gr.Interface( | |
fn=generate_caption, | |
inputs=gr.Image(), | |
outputs=[ | |
gr.Textbox(label="Generated caption"), | |
gr.Button("Converts to Audio"), | |
gr.Audio(type="filepath", label="Generated Audio") | |
], | |
live=True | |
) | |
demo.launch(share=True) |