Natthathida's picture
Add python
975b4c6 verified
raw
history blame
1.62 kB
from transformers import pipeline, BlipForConditionalGeneration, BlipProcessor, AutoTokenizer, AutoModelForSeq2SeqLM
import torchaudio
from torchaudio.transforms import Resample
import torch
import gradio as gr
# Initialize TTS model from Hugging Face
tts_model_name = "suno/bark"
tts = pipeline(task="text-to-speech", model=tts_model_name)
# Initialize Blip model for image captioning
model_id = "dblasko/blip-dalle3-img2prompt"
blip_model = BlipForConditionalGeneration.from_pretrained(model_id)
blip_processor = BlipProcessor.from_pretrained(model_id)
def generate_caption(image):
# Generate caption from image using Blip model
inputs = blip_processor(images=image, return_tensors="pt")
pixel_values = inputs.pixel_values
generated_ids = blip_model.generate(pixel_values=pixel_values, max_length=50)
generated_caption = blip_processor.batch_decode(generated_ids, skip_special_tokens=True, temperature=0.8, top_k=40, top_p=0.9)[0]
# Use TTS model to convert generated caption to audio
audio_output = tts(generated_caption)
audio_path = "generated_audio_resampled.wav"
torchaudio.save(audio_path, torch.tensor(audio_output[0]), audio_output["sampling_rate"])
return generated_caption, audio_path
# Create a Gradio interface with an image input, a textbox output, a button, and an audio player
demo = gr.Interface(
fn=generate_caption,
inputs=gr.Image(),
outputs=[
gr.Textbox(label="Generated caption"),
gr.Button("Converts to Audio"),
gr.Audio(type="filepath", label="Generated Audio")
],
live=True
)
demo.launch(share=True)