File size: 5,729 Bytes
4f7effb
a4cc435
 
 
 
294884c
 
86255b9
 
 
 
 
 
 
da561bd
a4cc435
86255b9
 
 
 
 
a4cc435
86255b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f7effb
 
a4cc435
4f7effb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4cc435
294884c
4f7effb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86255b9
 
da561bd
86255b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4cc435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

from gamification.objects import PlatformEngagement, UserFeedback, UserLevel, UserPoints,CustomerInfo,Customer,IndividualUserLevel,Points,SimpleIndividualUserLevel
from gamification.levelLogic import create_level_func,get_all_levels_func,edit_level_func,delete_level_func
from gamification.imports import *
from gamification.pointLogic import create_points_func,get_all_simple_points_func,get_all_points_func
from concurrent.futures import ThreadPoolExecutor
executor = ThreadPoolExecutor(max_workers=5)

# Normal Math
def caculate_rate_change_func(c0,c1,days_ago):
    if c0 == 0:
        if c1 > 0:
            # If there are customers now, but no customers initially (c0 is 0), 
            # we consider it as infinite growth or 100% growth
            print("here")
            return {"daysAgo":days_ago,"totalCustomers": c1, "GrowthRate": 9999999999999999999999999999999999999999999999999999999, "GrowthRateType": "positive"}
        elif c1 == 0:
            # If both c0 and c1 are zero, there is no change
            return {"daysAgo":days_ago,"totalCustomers": c1, "GrowthRate": 0.0, "GrowthRateType": "neutral"}
        else:
            # This case is for when c1 < 0, but it's unlikely in a customer count scenario.
            return {"daysAgo":days_ago,"totalCustomers": c1, "GrowthRate": -999999999999999999999999999999999999999999999999999999, "GrowthRateType": "negative"}
    
    elif c1 > c0:
        # Positive growth rate: c1 > c0
        e = c1 - c0
        b = e / c0
        d = b * 100
        return {"daysAgo":days_ago,"totalCustomers": c1, "GrowthRate": d, "GrowthRateType": "positive"}
    
    elif c1 < c0:
        # Negative growth rate: c1 < c0
        e = c0 - c1
        b = e / c0
        d = b * 100
        return {"daysAgo":days_ago,"totalCustomers": c1, "GrowthRate": d, "GrowthRateType": "negative"}        
    
    elif c1 == c0:
        # No change: c1 == c0
        return {"daysAgo":days_ago,"totalCustomers": c1, "GrowthRate": 0.0, "GrowthRateType": "neutral"}



MONGO_URI = os.getenv("MONGO_URI")

# Levels





# points


# feedback
def create_feedback_func(document:UserFeedback)->bool:
    db_uri = MONGO_URI
    db_name = "crayonics"
    collection_name="Feedback"
    client = MongoClient(db_uri)
    db = client[db_name]
    collection = db[collection_name]
    # Insert the document
    if document!=None:
        feedbackPoints= Points(userId=document.userId,platformEngagement=PlatformEngagement(providing_feedback=15))
        executor.submit(create_points_func, document=feedbackPoints)
        result = collection.insert_one(document.model_dump())
        return True
    else:
        client.close()
        return False
    

def get_all_feedback_func() -> List[UserFeedback]:
    # MongoDB URI and configuration
    db_uri = MONGO_URI
    db_name = "crayonics"
    collection_name="Feedback"
    client = MongoClient(db_uri)
    db = client[db_name]
    collection = db[collection_name]
    
    # Fetch all documents from the collection
    feedback_cursor = collection.find()  # This returns a cursor to the documents
    
    # Convert the cursor to a list of UserLevel objects
    feedbacks = [UserFeedback(**feedback) for feedback in feedback_cursor]
    
    return feedbacks




def get_all_customer_info()->List[CustomerInfo]:
    db_uri=MONGO_URI
    db_name = "crayonics"
    collection_name = "users"
    client = MongoClient(db_uri)
    db = client[db_name]
    collection = db[collection_name]
    
    # Fetch all documents from the collection
    customer_cursor = collection.find()  # This returns a cursor to the documents
    
    # Convert the cursor to a list of Customer objects, setting a default date_Joined if it's missing
    customers = []
    customer_info = []
    for customer in customer_cursor:
        # If date_Joined is missing, add the default value (current datetime)
        if 'date_Joined' not in customer:
            print("adding a new date")
            customer['date_Joined'] = datetime.now()
            collection.update_one(filter={"_id":ObjectId(customer['_id'])},update={"$set":customer})
        
        customers.append(Customer(**customer))  # Create Customer model with the filled data
    dt_now = datetime.now()
    thirty_days_ago = dt_now - timedelta(days=30)
    sixty_days_ago = dt_now - timedelta(days=60)
    ninty_days_ago = dt_now - timedelta(days=90)
    all_customer_from_30_days_ago = [customer for customer in customers if customer.date_Joined <=thirty_days_ago]
    all_customer_from_60_days_ago = [customer for customer in customers if customer.date_Joined <=sixty_days_ago]
    all_customer_from_90_days_ago = [customer for customer in customers if customer.date_Joined <=ninty_days_ago]
    rate_30_days = caculate_rate_change_func(c0=len(all_customer_from_30_days_ago),c1=len(customers),days_ago=30)
    rate_60_days = caculate_rate_change_func(c0=len(all_customer_from_60_days_ago),c1=len(customers),days_ago=60)
    rate_90_days = caculate_rate_change_func(c0=len(all_customer_from_90_days_ago),c1=len(customers),days_ago=90)
    list_of_rates= [rate_30_days,rate_60_days,rate_90_days]
    for rate in list_of_rates:
        customer_info.append(CustomerInfo(**rate))
    return customer_info





# Leaderboard Logic
def get_top_30():
    db_uri=MONGO_URI
    db_name = "crayonics"
    collection_name = "LeaderBoard"
    client = MongoClient(db_uri)
    db = client[db_name]
    collection = db[collection_name]
    sorted_documents = collection.find().sort([("totalpoints", -1), ("lastName", 1)]).limit(30)
    rankers = [
        {**r, 'rank': i + 1}  # Add 'rank' to the document with i+1 (1-based index)
        for i, r in enumerate(sorted_documents)
    ]

    return rankers