resume-api / app.py
Nattyboi's picture
added user details
5dbdab3
raw
history blame
15.2 kB
from io import BytesIO
from dotenv import load_dotenv
import os
from utils import *
from fastapi import FastAPI, File, HTTPException, Header, UploadFile,status
from tokenManagement import *
from jwtcoding import *
from fastapi.responses import JSONResponse
import docx
import fitz
from scraper import scrapeCourse
import asyncio
from google import genai
from fastapi.security import OAuth2PasswordBearer
from typing import Optional
from pydantic import BaseModel
load_dotenv()
CX = os.getenv("SEARCH_ENGINE_ID")
API_KEY = os.getenv("GOOGLE_API_KEY")
PINECONE_API_KEY=os.getenv("PINECONE_API_KEY")
GEMINI_API_KEY=os.getenv("GEMINI_API_KEY")
MONGO_URI=os.getenv("MONGO_URI")
app = FastAPI()
import re
class UserBody(BaseModel):
firstName: Optional[str] = None
lastName: Optional[str] = None
email:str
password:str
class AiAnalysis(BaseModel):
query:str
class Token(BaseModel):
refreshToken:str
class UserCourse(BaseModel):
employmentStatus:str
interimRole:str
desiredRole:str
motivation:str
learningPreference:str
hoursSpentLearning:str
challenges:str
timeframeToAchieveDreamRole:str
class CourseRecommendation(BaseModel):
courseName: str
completionTime: str
def extract_course_info(text: str) -> CourseRecommendation:
# Example regex patterns – adjust these as needed based on the response format.
course_pattern =r'"coursename":\s*"([^"]+)"'
time_pattern = r"(\d+\s*-\s*\d+\s*months)"
course_match = re.search(course_pattern, text)
time_match = re.search(time_pattern, text)
coursename = course_match.group(1).strip() if course_match else "Unknown"
completiontime = time_match.group(0).strip() if time_match else "Unknown"
return CourseRecommendation(courseName=coursename, completionTime=completiontime)
@app.get("/courses",tags=["Scrape"])
def get_course(query):
# Example search query
results = google_search(query, API_KEY, CX)
content=[]
if results:
for item in results.get('items', []):
title = item.get('title')
link = item.get('link')
snippet = item.get('snippet')
content_structure={}
content_structure["courseTitle"]=title
content_structure["courseLink"]=link
content_structure["courseSnippet"]= snippet
content_structure["scrapedCourseDetails"]= scrapeCourse(url=link)
content.append(content_structure)
return JSONResponse(content,status_code=200)
def get_course_func(query):
# Example search query
results = google_search(query, API_KEY, CX)
content=[]
if results:
for item in results.get('items', []):
title = item.get('title')
link = item.get('link')
snippet = item.get('snippet')
content_structure={}
content_structure["courseTitle"]=title
content_structure["courseLink"]=link
content_structure["courseSnippet"]= snippet
content_structure["scrapedCourseDetails"]= scrapeCourse(url=link)
content.append(content_structure)
return content
@app.post("/ai/upload",tags=["AI"])
async def upload_file(file: UploadFile = File(...),authorization: str = Header(...)):
# Extract the token from the Authorization header (Bearer token)
token = authorization.split("Bearer ")[-1]
# Here, you would validate the token (e.g., check with a JWT library)
decoded_user_id,decoded_access_token = decode_jwt(token)
is_valid = verify_access_token(db_uri=MONGO_URI, user_id=decoded_user_id, access_token=decoded_access_token)
if is_valid != True: # Example check
raise HTTPException(status_code=401, detail="Invalid token")
else:
content = await file.read() # Read the file content (this will return bytes)
sentences=[]
print(f"File name: {file.filename}")
print(f"File content type: {file.content_type}")
print(f"File size: {file.size} bytes")
if "pdf" == file.filename.split('.')[1]:
pdf_document = fitz.open(stream=BytesIO(content), filetype="pdf")
extracted_text = ""
for page_num in range(pdf_document.page_count):
page = pdf_document.load_page(page_num)
extracted_text += page.get_text()
elif "docx" == file.filename.split('.')[1]:
docx_file = BytesIO(content)
doc = docx.Document(docx_file)
extracted_text = ""
for para in doc.paragraphs:
extracted_text += para.text + "\n"
sentences = split_text_into_chunks(extracted_text,chunk_size=200)
docs = generate_embedding_for_user_resume(data=sentences,user_id=file.filename)
response= insert_embeddings_into_pinecone_database(doc=docs,api_key=PINECONE_API_KEY,name_space=decoded_user_id)
return {" name": file.filename,"response":str(response) }
@app.post("/ai/ask",tags=["AI"])
def ask_ai_about_resume(req:AiAnalysis,authorization: str = Header(...)):
# Retrieve context from your vector database
token = authorization.split("Bearer ")[-1]
# Here, you would validate the token (e.g., check with a JWT library)
decoded_user_id,decoded_access_token = decode_jwt(token)
is_valid = verify_access_token(db_uri=MONGO_URI, user_id=decoded_user_id, access_token=decoded_access_token)
if is_valid != True: # Example check
raise HTTPException(status_code=401, detail="Invalid token")
context = query_vector_database(query=req.Query, api_key=PINECONE_API_KEY, name_space=decoded_user_id)
# Ensure that an event loop is present in this thread.
try:
loop = asyncio.get_event_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
# Create the Gemini client after the event loop is set up
client = genai.Client(api_key=GEMINI_API_KEY)
response = client.models.generate_content(
model="gemini-2.0-flash",
contents=f"""
Answer this question using the context provided:
question: {req.Query}
context: {context}
"""
)
return {"Ai_Response":response.text}
@app.post("/ai/recommend",tags=["AI"])
def ask_ai_to_recommnd_courses(request:UserCourse,authorization:str=Header(...)):
"""
User Profile Information for Career Development
This section defines the parameters used to gather information from the user to understand their current employment situation, learning preferences, challenges, and goals related to achieving their dream role.
Parameters:
employment_status (str):
A description of the user's current employment situation (e.g., "unemployed", "part-time", "full-time").
interim_role (str):
Indicates whether the user is willing to prepare for an interim role to gain experience and income while pursuing their dream role (e.g., "yes" or "no").
desired_role (str):
The role the user ultimately wishes to obtain (e.g., "Full-Stack Developer", "Data Scientist").
motivation (str):
The user's reasons or motivations for pursuing the desired role.
learning_preference (str):
Describes how the user prefers to learn new skills (e.g., "online courses", "self-study", "bootcamp").
hours_spent_learning (str or int):
The number of hours per day the user can dedicate to learning.
challenges (str):
Outlines any obstacles or challenges the user faces in reaching their dream role.
timeframe_to_achieve_dream_role (str):
The ideal timeframe the user has in mind for achieving their dream role (e.g., "6-12 months").
"""
# Extract the token from the Authorization header (Bearer token)
token = authorization.split("Bearer ")[-1]
# Here, you would validate the token (e.g., check with a JWT library)
decoded_user_id,decoded_access_token = decode_jwt(token)
is_valid = verify_access_token(db_uri=MONGO_URI, user_id=decoded_user_id, access_token=decoded_access_token)
if is_valid != True: # Example check
raise HTTPException(status_code=401, detail="Invalid token")
# Ensure that an event loop is present in this thread.
try:
loop = asyncio.get_event_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
# Create the Gemini client after the event loop is set up
client = genai.Client(api_key=GEMINI_API_KEY)
response = client.models.generate_content(
model="gemini-2.0-flash",
contents=f"""
please respond with a JSON object that contains the following keys as a response:
- "coursename": the name of the recommended course,
- "completiontime": an estimate of how long it would take to complete the course.
Do not include any extra text.
Recommend a course using this information below :
Which of the following best describes you?: {request.employmentStatus}
Would you like to prepare for an interim role to gain experience and income while pursuing your dream job?: {request.InterimRole}
What is your desired role?: {request.desiredRole}
Why do you want to achieve this desired role?: {request.motivation}
How do you prefer to learn new skills?: {request.learningPreference}
How many hours per day can you dedicate to learning?: {request.hoursSpentLearning}
What are the biggest challenges or obstacles you face in reaching your dream role?: {request.challenges}
What is your ideal timeframe for achieving your dream role?: {request.timeframeToAchieveDreamRole}
"""
)
questions=request.model_dump()
questions['userId']=decoded_user_id
create_questionaire(db_uri=MONGO_URI,db_name="crayonics",collection_name="Questionaire",document=questions)
course_info = extract_course_info(response.text)
courses = get_course_func(query=course_info.courseName)
return {"courseInfo":course_info,"courses":courses}
@app.post("/auth/login",tags=["Authentication"])
def login(user:UserBody):
user ={"email":user.email,"password":user.password,"firstName":user.firstName,"lastName":user.lastName}
print(user)
user_id= login_user(db_uri=MONGO_URI,db_name="crayonics",collection_name="users",document=user)
if user_id != False:
refreshToken=create_refreshToken(db_uri=MONGO_URI,user_id=user_id)
accessToken = create_accessToken(db_uri=MONGO_URI,user_id=user_id,refresh_token=refreshToken)
result = update_refreshTokenWithPreviouslyUsedAccessToken(db_uri=MONGO_URI,refresh_token=refreshToken,access_token=accessToken)
print(result)
access_token = encode_jwt(user_id=user_id,access_token=accessToken)
return {"refreshToken":refreshToken,"accessToken":access_token}
return JSONResponse(status_code=401,content="Invalid login details")
@app.post("/auth/signup",tags=["Authentication"])
def signUp(user:UserBody):
user ={"email":user.email,"password":user.password,"first_name":user.firstName,"last_name":user.lastName}
user_id= create_user(db_uri=MONGO_URI,db_name="crayonics",collection_name="users",document=user)
if user_id != False:
refreshToken=create_refreshToken(db_uri=MONGO_URI,user_id=user_id)
accessToken = create_accessToken(db_uri=MONGO_URI,user_id=user_id,refresh_token=refreshToken)
result = update_refreshTokenWithPreviouslyUsedAccessToken(db_uri=MONGO_URI,refresh_token=refreshToken,access_token=accessToken)
print(result)
access_token = encode_jwt(user_id=user_id,access_token=accessToken)
return {"refreshToken":refreshToken,"accessToken":access_token}
return JSONResponse(status_code=status.HTTP_226_IM_USED,content="user already Exists")
@app.post("/auth/logout",tags=["Authentication"])
def logout(refresh:Token,authorization: str = Header(...)):
token = authorization.split("Bearer ")[-1]
decoded_user_id,decoded_access_token = decode_jwt(token)
is_valid = verify_access_token(db_uri=MONGO_URI, user_id=decoded_user_id, access_token=decoded_access_token)
if is_valid != True: # Example check
raise HTTPException(status_code=status.HTTP_401_UNAUTHORIZED, detail="Invalid token")
result = logout_func(db_uri=MONGO_URI,refresh_token= refresh.refreshToken)
if result ==True:
return {"content": f"successful"}
else:
return JSONResponse(status_code=status.HTTP_410_GONE,content={"content": f"unsuccessful"})
@app.post("/auth/refresh",tags=["Authentication"])
def refresh_access_token(refresh_token:Token, authorization: str = Header(...)):
token = authorization.split("Bearer ")[-1]
# Here, you would validate the token (e.g., check with a JWT library)
decoded_user_id,decoded_access_token = decode_jwt(token)
is_valid = verify_access_token(db_uri=MONGO_URI, user_id=decoded_user_id, access_token=decoded_access_token)
if is_valid != True: # Example check
raise HTTPException(status_code=401, detail="Invalid token")
new_access_token = create_accessToken(db_uri=MONGO_URI,user_id=decoded_user_id,refresh_token=refresh_token.refreshToken)
update_refreshTokenWithPreviouslyUsedAccessToken(db_uri=MONGO_URI,refresh_token=refresh_token.refreshToken,access_token=new_access_token)
newly_encoded_access_token = encode_jwt(user_id=decoded_user_id,access_token=new_access_token)
return {"accessToken":newly_encoded_access_token}
@app.get("/user/user-details",tags=["user"])
def get_user_details(authorization: str = Header(...)):
# Extract the token from the Authorization header (Bearer token)
token = authorization.split("Bearer ")[-1]
# Here, you would validate the token (e.g., check with a JWT library)
decoded_user_id,decoded_access_token = decode_jwt(token)
is_valid = verify_access_token(db_uri=MONGO_URI, user_id=decoded_user_id, access_token=decoded_access_token)
if is_valid != True: # Example check
raise HTTPException(status_code=401, detail="Invalid token")
doc = {"user_id":decoded_user_id}
user_info = user_details_func(db_uri=MONGO_URI,document=doc)
return { "userInfo": user_info}
@app.get("/protected-route")
def protected_route(authorization: str = Header(...)):
# Extract the token from the Authorization header (Bearer token)
token = authorization.split("Bearer ")[-1]
# Here, you would validate the token (e.g., check with a JWT library)
decoded_user_id,decoded_access_token = decode_jwt(token)
is_valid = verify_access_token(db_uri=MONGO_URI, user_id=decoded_user_id, access_token=decoded_access_token)
if is_valid != True: # Example check
raise HTTPException(status_code=401, detail="Invalid token")
return {"message": "Access granted", "verification": "verified"}