Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from io import BytesIO
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
import os
|
4 |
+
from utils import google_search,split_text_into_chunks,insert_embeddings_into_pinecone_database,query_vector_database,generate_embedding_for_user_resume,delete_vector_namespace
|
5 |
+
from fastapi import FastAPI, File, UploadFile
|
6 |
+
from fastapi.responses import JSONResponse
|
7 |
+
import docx
|
8 |
+
import fitz
|
9 |
+
load_dotenv()
|
10 |
+
|
11 |
+
CX = os.getenv("SEARCH_ENGINE_ID")
|
12 |
+
API_KEY = os.getenv("API_KEY")
|
13 |
+
PINECONE_API_KEY=os.getenv("PINECONE_API_KEY")
|
14 |
+
GEMINI_API_KEY=os.getenv("GEMINI_API_KEY")
|
15 |
+
app = FastAPI()
|
16 |
+
|
17 |
+
@app.get("/get/course")
|
18 |
+
def get_course(query):
|
19 |
+
# Example search query
|
20 |
+
results = google_search(query, API_KEY, CX)
|
21 |
+
content=[]
|
22 |
+
|
23 |
+
if results:
|
24 |
+
for item in results.get('items', []):
|
25 |
+
title = item.get('title')
|
26 |
+
link = item.get('link')
|
27 |
+
snippet = item.get('snippet')
|
28 |
+
content_structure={}
|
29 |
+
|
30 |
+
content_structure["Course_Title"]=title
|
31 |
+
content_structure["Course_Link"]=link
|
32 |
+
content_structure["Course_Snippet"]= snippet
|
33 |
+
|
34 |
+
content.append(content_structure)
|
35 |
+
|
36 |
+
|
37 |
+
return JSONResponse(content,status_code=200)
|
38 |
+
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
@app.post("/upload")
|
45 |
+
async def upload_file(user_id,file: UploadFile = File(...)):
|
46 |
+
content = await file.read() # Read the file content (this will return bytes)
|
47 |
+
sentences=[]
|
48 |
+
|
49 |
+
# Print file details for debugging
|
50 |
+
print(f"File name: {file.filename}")
|
51 |
+
print(f"File content type: {file.content_type}")
|
52 |
+
print(f"File size: {file.size} bytes")
|
53 |
+
|
54 |
+
|
55 |
+
if "pdf" == file.filename.split('.')[1]:
|
56 |
+
pdf_document = fitz.open(stream=BytesIO(content), filetype="pdf")
|
57 |
+
# Print the content of the file (if it's text, you can decode it)
|
58 |
+
extracted_text = ""
|
59 |
+
for page_num in range(pdf_document.page_count):
|
60 |
+
page = pdf_document.load_page(page_num)
|
61 |
+
extracted_text += page.get_text()
|
62 |
+
|
63 |
+
elif "docx" == file.filename.split('.')[1]:
|
64 |
+
docx_file = BytesIO(content)
|
65 |
+
doc = docx.Document(docx_file)
|
66 |
+
extracted_text = ""
|
67 |
+
for para in doc.paragraphs:
|
68 |
+
extracted_text += para.text + "\n"
|
69 |
+
|
70 |
+
sentences = split_text_into_chunks(extracted_text,chunk_size=200)
|
71 |
+
docs = generate_embedding_for_user_resume(data=sentences,user_id=file.filename)
|
72 |
+
response= insert_embeddings_into_pinecone_database(doc=docs,api_key=PINECONE_API_KEY,name_space=user_id)
|
73 |
+
|
74 |
+
return {"filename": file.filename,"response":str(response) }
|
75 |
+
|
76 |
+
|
77 |
+
|
78 |
+
|
79 |
+
@app.get("/ask")
|
80 |
+
def ask_ai_about_resume(query,user_id):
|
81 |
+
context = query_vector_database(query=query,api_key=PINECONE_API_KEY,name_space=user_id)
|
82 |
+
from google import genai
|
83 |
+
|
84 |
+
client = genai.Client(api_key=GEMINI_API_KEY)
|
85 |
+
response = client.models.generate_content(
|
86 |
+
model="gemini-2.0-flash", contents=f"""
|
87 |
+
Answer this question using the context provided
|
88 |
+
question: {query}
|
89 |
+
context: {context}
|
90 |
+
"""
|
91 |
+
)
|
92 |
+
|
93 |
+
return response.text
|