Spaces:
Running
Running
added some stuff
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
from io import BytesIO
|
2 |
from dotenv import load_dotenv
|
3 |
import os
|
4 |
-
from utils import google_search,split_text_into_chunks,insert_embeddings_into_pinecone_database,query_vector_database,generate_embedding_for_user_resume,delete_vector_namespace
|
5 |
from fastapi import FastAPI, File, UploadFile
|
6 |
from fastapi.responses import JSONResponse
|
7 |
import docx
|
@@ -16,15 +16,34 @@ CX = os.getenv("SEARCH_ENGINE_ID")
|
|
16 |
API_KEY = os.getenv("GOOGLE_API_KEY")
|
17 |
PINECONE_API_KEY=os.getenv("PINECONE_API_KEY")
|
18 |
GEMINI_API_KEY=os.getenv("GEMINI_API_KEY")
|
|
|
19 |
app = FastAPI()
|
20 |
|
21 |
import re
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
|
25 |
class CourseRecommendation(BaseModel):
|
26 |
-
|
27 |
-
|
28 |
|
29 |
def extract_course_info(text: str) -> CourseRecommendation:
|
30 |
# Example regex patterns – adjust these as needed based on the response format.
|
@@ -37,7 +56,7 @@ def extract_course_info(text: str) -> CourseRecommendation:
|
|
37 |
coursename = course_match.group(1).strip() if course_match else "Unknown"
|
38 |
completiontime = time_match.group(0).strip() if time_match else "Unknown"
|
39 |
|
40 |
-
return CourseRecommendation(
|
41 |
|
42 |
|
43 |
|
@@ -78,12 +97,10 @@ def get_course_func(query):
|
|
78 |
link = item.get('link')
|
79 |
snippet = item.get('snippet')
|
80 |
content_structure={}
|
81 |
-
|
82 |
content_structure["Course_Title"]=title
|
83 |
content_structure["Course_Link"]=link
|
84 |
content_structure["Course_Snippet"]= snippet
|
85 |
content_structure["Scraped_Course_Details"]= scrapeCourse(url=link)
|
86 |
-
|
87 |
content.append(content_structure)
|
88 |
|
89 |
|
@@ -100,7 +117,6 @@ async def upload_file(user_id,file: UploadFile = File(...)):
|
|
100 |
content = await file.read() # Read the file content (this will return bytes)
|
101 |
sentences=[]
|
102 |
|
103 |
-
# Print file details for debugging
|
104 |
print(f"File name: {file.filename}")
|
105 |
print(f"File content type: {file.content_type}")
|
106 |
print(f"File size: {file.size} bytes")
|
@@ -108,7 +124,6 @@ async def upload_file(user_id,file: UploadFile = File(...)):
|
|
108 |
|
109 |
if "pdf" == file.filename.split('.')[1]:
|
110 |
pdf_document = fitz.open(stream=BytesIO(content), filetype="pdf")
|
111 |
-
# Print the content of the file (if it's text, you can decode it)
|
112 |
extracted_text = ""
|
113 |
for page_num in range(pdf_document.page_count):
|
114 |
page = pdf_document.load_page(page_num)
|
@@ -129,10 +144,10 @@ async def upload_file(user_id,file: UploadFile = File(...)):
|
|
129 |
|
130 |
|
131 |
|
132 |
-
@app.
|
133 |
-
def ask_ai_about_resume(
|
134 |
# Retrieve context from your vector database
|
135 |
-
context = query_vector_database(query=
|
136 |
|
137 |
# Ensure that an event loop is present in this thread.
|
138 |
try:
|
@@ -148,15 +163,15 @@ def ask_ai_about_resume(query, user_id):
|
|
148 |
model="gemini-2.0-flash",
|
149 |
contents=f"""
|
150 |
Answer this question using the context provided:
|
151 |
-
question: {
|
152 |
context: {context}
|
153 |
"""
|
154 |
)
|
155 |
|
156 |
return {"Ai_Response":response.text}
|
157 |
|
158 |
-
@app.
|
159 |
-
def ask_ai_about_resume(
|
160 |
"""
|
161 |
User Profile Information for Career Development
|
162 |
|
@@ -214,18 +229,33 @@ Parameters:
|
|
214 |
- "completiontime": an estimate of how long it would take to complete the course.
|
215 |
Do not include any extra text.
|
216 |
Recommend a course using this information below :
|
217 |
-
Which of the following best describes you?: {
|
218 |
-
Would you like to prepare for an interim role to gain experience and income while pursuing your dream job?: {
|
219 |
-
What is your desired role?: {
|
220 |
-
Why do you want to achieve this desired role?: {
|
221 |
-
How do you prefer to learn new skills?: {
|
222 |
-
How many hours per day can you dedicate to learning?: {
|
223 |
-
What are the biggest challenges or obstacles you face in reaching your dream role?: {
|
224 |
-
What is your ideal timeframe for achieving your dream role?: {
|
225 |
|
226 |
|
227 |
"""
|
228 |
)
|
229 |
course_info = extract_course_info(response.text)
|
230 |
-
courses = get_course_func(query=course_info.
|
231 |
-
return courses
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from io import BytesIO
|
2 |
from dotenv import load_dotenv
|
3 |
import os
|
4 |
+
from utils import google_search,split_text_into_chunks,insert_embeddings_into_pinecone_database,query_vector_database,generate_embedding_for_user_resume,delete_vector_namespace,create_user,login_user
|
5 |
from fastapi import FastAPI, File, UploadFile
|
6 |
from fastapi.responses import JSONResponse
|
7 |
import docx
|
|
|
16 |
API_KEY = os.getenv("GOOGLE_API_KEY")
|
17 |
PINECONE_API_KEY=os.getenv("PINECONE_API_KEY")
|
18 |
GEMINI_API_KEY=os.getenv("GEMINI_API_KEY")
|
19 |
+
MONGO_URI=os.getenv("MONGO_URI")
|
20 |
app = FastAPI()
|
21 |
|
22 |
import re
|
23 |
|
24 |
+
class UserBody(BaseModel):
|
25 |
+
Email:str
|
26 |
+
Password:str
|
27 |
+
|
28 |
+
class AiAnalysis(BaseModel):
|
29 |
+
UserId:str
|
30 |
+
Query:str
|
31 |
+
|
32 |
+
class UserCourse(BaseModel):
|
33 |
+
EmploymentStatus:str
|
34 |
+
InterimRole:str
|
35 |
+
DesiredRole:str
|
36 |
+
Motivation:str
|
37 |
+
LearningPreference:str
|
38 |
+
HoursSpentLearning:str
|
39 |
+
Challenges:str
|
40 |
+
TimeframeToAchieveDreamRole:str
|
41 |
+
userId:str
|
42 |
|
43 |
|
44 |
class CourseRecommendation(BaseModel):
|
45 |
+
CourseName: str
|
46 |
+
CompletionTime: str
|
47 |
|
48 |
def extract_course_info(text: str) -> CourseRecommendation:
|
49 |
# Example regex patterns – adjust these as needed based on the response format.
|
|
|
56 |
coursename = course_match.group(1).strip() if course_match else "Unknown"
|
57 |
completiontime = time_match.group(0).strip() if time_match else "Unknown"
|
58 |
|
59 |
+
return CourseRecommendation(CourseName=coursename, CompletionTime=completiontime)
|
60 |
|
61 |
|
62 |
|
|
|
97 |
link = item.get('link')
|
98 |
snippet = item.get('snippet')
|
99 |
content_structure={}
|
|
|
100 |
content_structure["Course_Title"]=title
|
101 |
content_structure["Course_Link"]=link
|
102 |
content_structure["Course_Snippet"]= snippet
|
103 |
content_structure["Scraped_Course_Details"]= scrapeCourse(url=link)
|
|
|
104 |
content.append(content_structure)
|
105 |
|
106 |
|
|
|
117 |
content = await file.read() # Read the file content (this will return bytes)
|
118 |
sentences=[]
|
119 |
|
|
|
120 |
print(f"File name: {file.filename}")
|
121 |
print(f"File content type: {file.content_type}")
|
122 |
print(f"File size: {file.size} bytes")
|
|
|
124 |
|
125 |
if "pdf" == file.filename.split('.')[1]:
|
126 |
pdf_document = fitz.open(stream=BytesIO(content), filetype="pdf")
|
|
|
127 |
extracted_text = ""
|
128 |
for page_num in range(pdf_document.page_count):
|
129 |
page = pdf_document.load_page(page_num)
|
|
|
144 |
|
145 |
|
146 |
|
147 |
+
@app.post("/ask")
|
148 |
+
def ask_ai_about_resume(req:AiAnalysis):
|
149 |
# Retrieve context from your vector database
|
150 |
+
context = query_vector_database(query=req.Query, api_key=PINECONE_API_KEY, name_space=req.UserId)
|
151 |
|
152 |
# Ensure that an event loop is present in this thread.
|
153 |
try:
|
|
|
163 |
model="gemini-2.0-flash",
|
164 |
contents=f"""
|
165 |
Answer this question using the context provided:
|
166 |
+
question: {req.Query}
|
167 |
context: {context}
|
168 |
"""
|
169 |
)
|
170 |
|
171 |
return {"Ai_Response":response.text}
|
172 |
|
173 |
+
@app.post("/recommend/courses")
|
174 |
+
def ask_ai_about_resume(request:UserCourse):
|
175 |
"""
|
176 |
User Profile Information for Career Development
|
177 |
|
|
|
229 |
- "completiontime": an estimate of how long it would take to complete the course.
|
230 |
Do not include any extra text.
|
231 |
Recommend a course using this information below :
|
232 |
+
Which of the following best describes you?: {request.EmploymentStatus}
|
233 |
+
Would you like to prepare for an interim role to gain experience and income while pursuing your dream job?: {request.InterimRole}
|
234 |
+
What is your desired role?: {request.DesiredRole}
|
235 |
+
Why do you want to achieve this desired role?: {request.Motivation}
|
236 |
+
How do you prefer to learn new skills?: {request.LearningPreference}
|
237 |
+
How many hours per day can you dedicate to learning?: {request.HoursSpentLearning}
|
238 |
+
What are the biggest challenges or obstacles you face in reaching your dream role?: {request.Challenges}
|
239 |
+
What is your ideal timeframe for achieving your dream role?: {request.TimeframeToAchieveDreamRole}
|
240 |
|
241 |
|
242 |
"""
|
243 |
)
|
244 |
course_info = extract_course_info(response.text)
|
245 |
+
courses = get_course_func(query=course_info.CourseName)
|
246 |
+
return {"CourseInfo":course_info,"Courses":courses}
|
247 |
+
|
248 |
+
|
249 |
+
|
250 |
+
@app.post("/login")
|
251 |
+
def signUp(user:UserBody):
|
252 |
+
user ={"email":user.Email,"password":user.Password}
|
253 |
+
user_id= login_user(db_uri=MONGO_URI,db_name="crayonics",collection_name="users",document=user)
|
254 |
+
return {"user_id":user_id}
|
255 |
+
|
256 |
+
|
257 |
+
@app.post("/signup")
|
258 |
+
def signUp(user:UserBody):
|
259 |
+
user ={"email":user.Email,"password":user.Password}
|
260 |
+
user_id= create_user(db_uri=MONGO_URI,db_name="crayonics",collection_name="users",document=user)
|
261 |
+
return {"user_id":user_id}
|
utils.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import requests
|
|
|
2 |
|
3 |
def google_search(query, api_key, cx):
|
4 |
url = f"https://www.googleapis.com/customsearch/v1?q={query}&key={api_key}&cx={cx}"
|
@@ -107,3 +108,74 @@ def split_text_into_chunks(text, chunk_size=400):
|
|
107 |
chunks = [' '.join(words[i:i + chunk_size]) for i in range(0, len(words), chunk_size)]
|
108 |
return chunks
|
109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import requests
|
2 |
+
from pymongo import MongoClient
|
3 |
|
4 |
def google_search(query, api_key, cx):
|
5 |
url = f"https://www.googleapis.com/customsearch/v1?q={query}&key={api_key}&cx={cx}"
|
|
|
108 |
chunks = [' '.join(words[i:i + chunk_size]) for i in range(0, len(words), chunk_size)]
|
109 |
return chunks
|
110 |
|
111 |
+
|
112 |
+
|
113 |
+
|
114 |
+
|
115 |
+
def create_user(db_uri: str, db_name: str, collection_name: str, document: dict) -> str:
|
116 |
+
"""
|
117 |
+
Inserts a new document into the specified MongoDB collection.
|
118 |
+
|
119 |
+
Parameters:
|
120 |
+
db_uri (str): MongoDB connection URI.
|
121 |
+
db_name (str): Name of the database.
|
122 |
+
collection_name (str): Name of the collection.
|
123 |
+
document (dict): The document to insert.
|
124 |
+
|
125 |
+
Returns:
|
126 |
+
str: The ID of the inserted document.
|
127 |
+
"""
|
128 |
+
# Connect to MongoDB
|
129 |
+
client = MongoClient(db_uri)
|
130 |
+
db = client[db_name]
|
131 |
+
collection = db[collection_name]
|
132 |
+
|
133 |
+
# Insert the document
|
134 |
+
s = collection.find_one(document)
|
135 |
+
if s==None:
|
136 |
+
result = collection.insert_one(document)
|
137 |
+
client.close()
|
138 |
+
return str(result.inserted_id)
|
139 |
+
else:
|
140 |
+
client.close()
|
141 |
+
return str(s['_id'])
|
142 |
+
|
143 |
+
# Close the connection
|
144 |
+
|
145 |
+
|
146 |
+
|
147 |
+
|
148 |
+
|
149 |
+
def login_user(db_uri: str, db_name: str, collection_name: str, document: dict) -> str:
|
150 |
+
"""
|
151 |
+
Inserts a new document into the specified MongoDB collection.
|
152 |
+
|
153 |
+
Parameters:
|
154 |
+
db_uri (str): MongoDB connection URI.
|
155 |
+
db_name (str): Name of the database.
|
156 |
+
collection_name (str): Name of the collection.
|
157 |
+
document (dict): The document to insert.
|
158 |
+
|
159 |
+
Returns:
|
160 |
+
str: The ID of the inserted document.
|
161 |
+
"""
|
162 |
+
# Connect to MongoDB
|
163 |
+
client = MongoClient(db_uri)
|
164 |
+
db = client[db_name]
|
165 |
+
collection = db[collection_name]
|
166 |
+
|
167 |
+
# Insert the document
|
168 |
+
s = collection.find_one(document)
|
169 |
+
if s==None:
|
170 |
+
return False
|
171 |
+
else:
|
172 |
+
if document['password']==s['password']:
|
173 |
+
client.close()
|
174 |
+
return str(s['_id'])
|
175 |
+
else:
|
176 |
+
return True
|
177 |
+
# Close the connection
|
178 |
+
|
179 |
+
|
180 |
+
|
181 |
+
|