Spaces:
Running
Running
app.py updated
Browse files- __pycache__/app.cpython-310.pyc +0 -0
- __pycache__/utils.cpython-310.pyc +0 -0
- app.py +126 -1
__pycache__/app.cpython-310.pyc
ADDED
Binary file (6.98 kB). View file
|
|
__pycache__/utils.cpython-310.pyc
ADDED
Binary file (3.17 kB). View file
|
|
app.py
CHANGED
@@ -8,6 +8,7 @@ import docx
|
|
8 |
import fitz
|
9 |
import asyncio
|
10 |
from google import genai
|
|
|
11 |
load_dotenv()
|
12 |
|
13 |
CX = os.getenv("SEARCH_ENGINE_ID")
|
@@ -16,6 +17,30 @@ PINECONE_API_KEY=os.getenv("PINECONE_API_KEY")
|
|
16 |
GEMINI_API_KEY=os.getenv("GEMINI_API_KEY")
|
17 |
app = FastAPI()
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
@app.get("/get/course")
|
20 |
def get_course(query):
|
21 |
# Example search query
|
@@ -41,6 +66,31 @@ def get_course(query):
|
|
41 |
|
42 |
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
|
46 |
@app.post("/upload")
|
@@ -101,4 +151,79 @@ def ask_ai_about_resume(query, user_id):
|
|
101 |
"""
|
102 |
)
|
103 |
|
104 |
-
return {"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
import fitz
|
9 |
import asyncio
|
10 |
from google import genai
|
11 |
+
from pydantic import BaseModel
|
12 |
load_dotenv()
|
13 |
|
14 |
CX = os.getenv("SEARCH_ENGINE_ID")
|
|
|
17 |
GEMINI_API_KEY=os.getenv("GEMINI_API_KEY")
|
18 |
app = FastAPI()
|
19 |
|
20 |
+
import re
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
class CourseRecommendation(BaseModel):
|
25 |
+
coursename: str
|
26 |
+
completiontime: str
|
27 |
+
|
28 |
+
def extract_course_info(text: str) -> CourseRecommendation:
|
29 |
+
# Example regex patterns – adjust these as needed based on the response format.
|
30 |
+
course_pattern =r'"coursename":\s*"([^"]+)"'
|
31 |
+
time_pattern = r"(\d+\s*-\s*\d+\s*months)"
|
32 |
+
|
33 |
+
course_match = re.search(course_pattern, text)
|
34 |
+
time_match = re.search(time_pattern, text)
|
35 |
+
|
36 |
+
coursename = course_match.group(1).strip() if course_match else "Unknown"
|
37 |
+
completiontime = time_match.group(0).strip() if time_match else "Unknown"
|
38 |
+
|
39 |
+
return CourseRecommendation(coursename=coursename, completiontime=completiontime)
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
@app.get("/get/course")
|
45 |
def get_course(query):
|
46 |
# Example search query
|
|
|
66 |
|
67 |
|
68 |
|
69 |
+
def get_course_func(query):
|
70 |
+
# Example search query
|
71 |
+
results = google_search(query, API_KEY, CX)
|
72 |
+
content=[]
|
73 |
+
|
74 |
+
if results:
|
75 |
+
for item in results.get('items', []):
|
76 |
+
title = item.get('title')
|
77 |
+
link = item.get('link')
|
78 |
+
snippet = item.get('snippet')
|
79 |
+
content_structure={}
|
80 |
+
|
81 |
+
content_structure["Course_Title"]=title
|
82 |
+
content_structure["Course_Link"]=link
|
83 |
+
content_structure["Course_Snippet"]= snippet
|
84 |
+
|
85 |
+
content.append(content_structure)
|
86 |
+
|
87 |
+
|
88 |
+
return content
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
|
95 |
|
96 |
@app.post("/upload")
|
|
|
151 |
"""
|
152 |
)
|
153 |
|
154 |
+
return {"Ai_Response":response.text}
|
155 |
+
|
156 |
+
@app.get("/recommend/courses")
|
157 |
+
def ask_ai_about_resume(employment_status:str,interim_role:str,desired_role:str,motivation:str,learning_preference:str,hours_spent_learning:str,challenges:str,timeframe_to_achieve_dream_role:str, user_id:str):
|
158 |
+
"""
|
159 |
+
User Profile Information for Career Development
|
160 |
+
|
161 |
+
This section defines the parameters used to gather information from the user to understand their current employment situation, learning preferences, challenges, and goals related to achieving their dream role.
|
162 |
+
|
163 |
+
Parameters:
|
164 |
+
|
165 |
+
employment_status (str):
|
166 |
+
A description of the user's current employment situation (e.g., "unemployed", "part-time", "full-time").
|
167 |
+
|
168 |
+
interim_role (str):
|
169 |
+
Indicates whether the user is willing to prepare for an interim role to gain experience and income while pursuing their dream role (e.g., "yes" or "no").
|
170 |
+
|
171 |
+
desired_role (str):
|
172 |
+
The role the user ultimately wishes to obtain (e.g., "Full-Stack Developer", "Data Scientist").
|
173 |
+
|
174 |
+
motivation (str):
|
175 |
+
The user's reasons or motivations for pursuing the desired role.
|
176 |
+
|
177 |
+
learning_preference (str):
|
178 |
+
Describes how the user prefers to learn new skills (e.g., "online courses", "self-study", "bootcamp").
|
179 |
+
|
180 |
+
hours_spent_learning (str or int):
|
181 |
+
The number of hours per day the user can dedicate to learning.
|
182 |
+
|
183 |
+
challenges (str):
|
184 |
+
Outlines any obstacles or challenges the user faces in reaching their dream role.
|
185 |
+
|
186 |
+
timeframe_to_achieve_dream_role (str):
|
187 |
+
The ideal timeframe the user has in mind for achieving their dream role (e.g., "6-12 months").
|
188 |
+
|
189 |
+
user_id (str):
|
190 |
+
A unique identifier for the user; used to query personalized data from a vector database or other services.
|
191 |
+
|
192 |
+
"""
|
193 |
+
|
194 |
+
|
195 |
+
# Retrieve context from your vector database
|
196 |
+
|
197 |
+
# Ensure that an event loop is present in this thread.
|
198 |
+
try:
|
199 |
+
loop = asyncio.get_event_loop()
|
200 |
+
except RuntimeError:
|
201 |
+
loop = asyncio.new_event_loop()
|
202 |
+
asyncio.set_event_loop(loop)
|
203 |
+
|
204 |
+
# Create the Gemini client after the event loop is set up
|
205 |
+
client = genai.Client(api_key=GEMINI_API_KEY)
|
206 |
+
|
207 |
+
response = client.models.generate_content(
|
208 |
+
model="gemini-2.0-flash",
|
209 |
+
contents=f"""
|
210 |
+
please respond with a JSON object that contains the following keys as a response:
|
211 |
+
- "coursename": the name of the recommended course,
|
212 |
+
- "completiontime": an estimate of how long it would take to complete the course.
|
213 |
+
Do not include any extra text.
|
214 |
+
Recommend a course using this information below :
|
215 |
+
Which of the following best describes you?: {employment_status}
|
216 |
+
Would you like to prepare for an interim role to gain experience and income while pursuing your dream job?: {interim_role}
|
217 |
+
What is your desired role?: {desired_role}
|
218 |
+
Why do you want to achieve this desired role?: {motivation}
|
219 |
+
How do you prefer to learn new skills?: {learning_preference}
|
220 |
+
How many hours per day can you dedicate to learning?: {hours_spent_learning}
|
221 |
+
What are the biggest challenges or obstacles you face in reaching your dream role?: {challenges}
|
222 |
+
What is your ideal timeframe for achieving your dream role?: {timeframe_to_achieve_dream_role}
|
223 |
+
|
224 |
+
|
225 |
+
"""
|
226 |
+
)
|
227 |
+
course_info = extract_course_info(response.text)
|
228 |
+
courses = get_course_func(query=course_info.coursename)
|
229 |
+
return courses
|