File size: 645 Bytes
6eda4a9
dfb0362
6eda4a9
dfb0362
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6eda4a9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
import gradio as gr
from transformers import pipeline

# Load a pre-trained AI text detector model
detector = pipeline("text-classification", model="roberta-base-openai-detector")

def detect_text(text):
    result = detector(text)[0]
    label = result['label']
    score = round(result['score'] * 100, 2)
    return f"Prediction: {label} ({score}%)"

# Gradio UI
interface = gr.Interface(
    fn=detect_text,
    inputs=gr.Textbox(lines=7, label="Enter your text"),
    outputs=gr.Textbox(label="Result"),
    title="Text AI Detector",
    description="This model predicts if the text is AI-generated or human-written."
)

interface.launch()