MohamedRashad's picture
Normalize precision comparison to capitalize in model submission checks
bc40b2e
raw
history blame
11.5 kB
import gradio as gr
import pandas as pd
import json
import os
from pathlib import Path
from huggingface_hub import HfApi, hf_hub_download
api = HfApi()
OWNER = "Navid-AI"
DATASET_REPO_ID = f"{OWNER}/requests-dataset"
results_dir = Path(__file__).parent / "results"
# Cache the HF token to avoid multiple os.environ lookups.
HF_TOKEN = os.environ.get('HF_TOKEN', None)
# Add a helper to load JSON results with optional formatting.
def load_json_results(file_path: Path, prepare_for_display=False, sort_col=None, drop_cols=None):
if file_path.exists():
df = pd.read_json(file_path)
else:
raise FileNotFoundError(f"File '{file_path}' not found.")
if prepare_for_display:
# Apply common mapping for model link formatting.
df[["Model"]] = df[["Model"]].map(lambda x: f'<a href="https://huggingface.co/{x}" target="_blank">{x}</a>')
if drop_cols is not None:
df.drop(columns=drop_cols, inplace=True)
if sort_col is not None:
df.sort_values(sort_col, ascending=False, inplace=True)
return df
def load_retrieval_results(prepare_for_display=False, sort_col=None, drop_cols=None):
dataframe_path = results_dir / "retrieval_results.json"
return load_json_results(
dataframe_path,
prepare_for_display=prepare_for_display,
sort_col=sort_col,
drop_cols=drop_cols
)
def load_reranking_results(prepare_for_display=False, sort_col=None, drop_cols=None):
dataframe_path = results_dir / "reranking_results.json"
return load_json_results(
dataframe_path,
prepare_for_display=prepare_for_display,
sort_col=sort_col,
drop_cols=drop_cols
)
def get_model_info(model_id, verbose=False):
model_info = api.model_info(model_id)
num_downloads = model_info.downloads
num_likes = model_info.likes
license = model_info.card_data["license"]
num_parameters = round(model_info.safetensors.total / 1e6)
supported_precisions = list(model_info.safetensors.parameters.keys())
if verbose:
print(f"Model '{model_id}' has {num_downloads} downloads, {num_likes} likes, and is licensed under {license}.")
print(f"The model has approximately {num_parameters:.2f} billion parameters.")
print(f"The model supports the following precisions: {supported_precisions}")
return num_downloads, num_likes, license, num_parameters, supported_precisions
def fetch_model_information(model_name):
try:
num_downloads, num_likes, license, num_parameters, supported_precisions = get_model_info(model_name)
if len(supported_precisions) == 0:
supported_precisions = [None]
except Exception as e:
gr.Error(f"Error: Could not fetch model information. {str(e)}")
return
return gr.update(choices=supported_precisions, value=supported_precisions[0]), license, num_parameters, num_downloads, num_likes
def submit_model(model_name, revision, precision, params, license, task):
# Load existing evaluations
if task == "Retriever":
df = load_retrieval_results()
elif task == "Reranker":
df = load_reranking_results()
else:
return "Task is not supported πŸ€·β€β™‚οΈ"
existing_models_results = df[['Model', 'Revision', 'Precision', 'Task']]
# Handle 'Missing' precision
if precision == 'Missing':
precision = None
else:
precision = precision.strip().lower()
# Load pending and finished requests from the dataset repository
df_pending = load_requests('pending')
df_finished = load_requests('finished')
# Check if model is already evaluated
model_exists_in_results = ((existing_models_results['Model'] == model_name) &
(existing_models_results['Revision'] == revision) &
(existing_models_results['Precision'] == precision.capitalize()) &
(existing_models_results['Task'] == task)).any()
if model_exists_in_results:
return f"Model {model_name} has already been evaluated as a {task} πŸŽ‰"
# Check if model is in pending requests
if not df_pending.empty:
existing_models_pending = df_pending[['model_name', 'revision', 'precision', 'task']]
model_exists_in_pending = ((existing_models_pending['model_name'] == model_name) &
(existing_models_pending['revision'] == revision) &
(existing_models_pending['precision'] == precision.capitalize()) &
(existing_models_pending['task'] == task)).any()
if model_exists_in_pending:
return f"Model {model_name} is already in the evaluation queue as a {task} πŸš€"
# Check if model is in finished requests
if not df_finished.empty:
existing_models_finished = df_finished[['model_name', 'revision', 'precision', 'task']]
model_exists_in_finished = ((existing_models_finished['model_name'] == model_name) &
(existing_models_finished['revision'] == revision) &
(existing_models_finished['precision'] == precision.capitalize()) &
(existing_models_finished['task'] == task)).any()
if model_exists_in_finished:
return f"Model {model_name} has already been evaluated as a {task} πŸŽ‰"
# Check if model exists on HuggingFace Hub
try:
api.model_info(model_name)
except Exception as e:
print(f"Error fetching model info: {e}")
return f"Model {model_name} not found on HuggingFace Hub πŸ€·β€β™‚οΈ"
# Proceed with submission
status = "PENDING"
# Prepare the submission data
submission = {
"model_name": model_name,
"license": license,
"revision": revision,
"precision": precision,
"status": status,
"params": params,
"task": task
}
# Serialize the submission to JSON
submission_json = json.dumps(submission, indent=2)
# Define the file path in the repository
org_model = model_name.split('/')
if len(org_model) != 2:
return "Please enter the full model name including the organization or username, e.g., 'intfloat/multilingual-e5-large-instruct' πŸ€·β€β™‚οΈ"
org, model_id = org_model
precision_str = precision if precision else 'Missing'
file_path_in_repo = f"pending/{org}/{model_id}_eval_request_{revision}_{precision_str}_{task.lower()}.json"
# Upload the submission to the dataset repository
try:
api.upload_file(
path_or_fileobj=submission_json.encode('utf-8'),
path_in_repo=file_path_in_repo,
repo_id=DATASET_REPO_ID,
repo_type="dataset",
token=HF_TOKEN
)
except Exception as e:
print(f"Error uploading file: {e}")
return f"Error: Could not submit model '{model_name}' for evaluation."
return f"Model {model_name} has been submitted successfully as a {task} πŸš€"
def load_requests(status_folder, task_type=None):
api = HfApi()
requests_data = []
folder_path_in_repo = status_folder # 'pending', 'finished', or 'failed'
try:
# Use the cached token
files_info = api.list_repo_files(
repo_id=DATASET_REPO_ID,
repo_type="dataset",
token=HF_TOKEN
)
except Exception as e:
print(f"Error accessing dataset repository: {e}")
return pd.DataFrame() # Return empty DataFrame if repository not found or inaccessible
# Filter files in the desired folder
files_in_folder = [f for f in files_info if f.startswith(f"{folder_path_in_repo}/") and f.endswith('.json')]
for file_path in files_in_folder:
try:
# Download the JSON file
local_file_path = hf_hub_download(
repo_id=DATASET_REPO_ID,
filename=file_path,
repo_type="dataset",
token=HF_TOKEN
)
# Load JSON data
with open(local_file_path, 'r') as f:
request = json.load(f)
requests_data.append(request)
except Exception as e:
print(f"Error loading file {file_path}: {e}")
continue # Skip files that can't be loaded
df = pd.DataFrame(requests_data)
# Filter by task type
if task_type and not df.empty:
df = df[df['task'] == task_type]
return df
def submit_gradio_module(task_type):
var = gr.State(value=task_type)
with gr.Row(equal_height=True):
model_name_input = gr.Textbox(
label="Model",
placeholder="Enter the full model name from HuggingFace Hub (e.g., intfloat/multilingual-e5-large-instruct)",
scale=4,
)
fetch_data_button = gr.Button(value="Auto Fetch Model Info", variant="secondary")
with gr.Row():
precision_input = gr.Dropdown(
choices=["F16", "F32", "BF16", "I8", "U8", "I16"],
label="Precision",
value="F16"
)
license_input = gr.Textbox(
label="License",
placeholder="Enter the license type (Generic one is 'Open' in case no License is provided)",
value="Open"
)
revision_input = gr.Textbox(
label="Revision",
placeholder="main",
value="main"
)
with gr.Row():
params_input = gr.Textbox(
label="Params (in Millions)",
interactive=False,
)
num_downloads_input = gr.Textbox(
label="Number of Downloads",
interactive=False,
)
num_likes_input = gr.Textbox(
label="Number of Likes",
interactive=False,
)
submit_button = gr.Button("Submit Model", variant="primary")
submission_result = gr.Textbox(label="Submission Result", interactive=False)
fetch_outputs = [precision_input, license_input, params_input, num_downloads_input, num_likes_input]
fetch_data_button.click(
fetch_model_information,
inputs=[model_name_input],
outputs=fetch_outputs
)
model_name_input.submit(
fetch_model_information,
inputs=[model_name_input],
outputs=fetch_outputs
)
submit_button.click(
submit_model,
inputs=[model_name_input, revision_input, precision_input, params_input, license_input, var],
outputs=submission_result
)
# Load pending, finished, and failed requests
df_pending = load_requests('pending', task_type)
df_finished = load_requests('finished', task_type)
df_failed = load_requests('failed', task_type)
# Display the tables
gr.Markdown("## Evaluation Status")
with gr.Accordion(f"Pending Evaluations ({len(df_pending)})", open=False):
if not df_pending.empty:
gr.Dataframe(df_pending)
else:
gr.Markdown("No pending evaluations.")
with gr.Accordion(f"Finished Evaluations ({len(df_finished)})", open=False):
if not df_finished.empty:
gr.Dataframe(df_finished)
else:
gr.Markdown("No finished evaluations.")
with gr.Accordion(f"Failed Evaluations ({len(df_failed)})", open=False):
if not df_failed.empty:
gr.Dataframe(df_failed)
else:
gr.Markdown("No failed evaluations.")