Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Commit
·
e9e4a75
1
Parent(s):
7d5aa22
Add functions to update displayed columns and their widths in retrieval and reranking leaderboards
Browse files
app.py
CHANGED
@@ -105,6 +105,17 @@ def retrieval_search_leaderboard(model_name, columns_to_show):
|
|
105 |
def reranking_search_leaderboard(model_name, columns_to_show):
|
106 |
return search_leaderboard(reranking_df, model_name, columns_to_show)
|
107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
def main():
|
110 |
global retrieval_df, reranking_df
|
@@ -112,11 +123,13 @@ def main():
|
|
112 |
# Prepare retrieval dataframe
|
113 |
retrieval_df = load_retrieval_results(True, "Web Search Dataset (Overall Score)", ["Revision", "Precision", "Task"])
|
114 |
retrieval_columns_to_show = ["Model", "Web Search Dataset (Overall Score)", "Model Size (MB)", "Embedding Dimension", "Max Tokens", "Num Likes"]
|
|
|
115 |
retrieval_cols = retrieval_df.columns.tolist() # cache columns
|
116 |
|
117 |
# Prepare reranking dataframe
|
118 |
reranking_df = load_reranking_results(True, sort_col="Overall Score", drop_cols=["Revision", "Precision", "Task"])
|
119 |
reranking_columns_to_show = ["Model", "Overall Score", "Model Parameters (in Millions)", "Embedding Dimensions", "Downloads Last Month", "MRR", "nDCG", "MAP"]
|
|
|
120 |
reranking_cols = reranking_df.columns.tolist() # cache columns
|
121 |
|
122 |
with gr.Blocks() as demo:
|
@@ -142,9 +155,10 @@ def main():
|
|
142 |
retrieval_leaderboard = gr.Dataframe(
|
143 |
value=retrieval_df[retrieval_columns_to_show],
|
144 |
datatype="markdown",
|
145 |
-
wrap=
|
146 |
show_fullscreen_button=True,
|
147 |
-
interactive=False
|
|
|
148 |
)
|
149 |
|
150 |
# Submit the search box and the leaderboard
|
@@ -154,7 +168,7 @@ def main():
|
|
154 |
outputs=retrieval_leaderboard
|
155 |
)
|
156 |
retrieval_columns_to_show_input.select(
|
157 |
-
|
158 |
inputs=retrieval_columns_to_show_input,
|
159 |
outputs=retrieval_leaderboard
|
160 |
)
|
@@ -184,9 +198,10 @@ def main():
|
|
184 |
reranker_leaderboard = gr.Dataframe(
|
185 |
value=reranking_df[reranking_columns_to_show],
|
186 |
datatype="markdown",
|
187 |
-
wrap=
|
188 |
show_fullscreen_button=True,
|
189 |
interactive=False,
|
|
|
190 |
)
|
191 |
|
192 |
# Submit the search box and the leaderboard
|
@@ -196,7 +211,7 @@ def main():
|
|
196 |
outputs=reranker_leaderboard
|
197 |
)
|
198 |
reranking_columns_to_show_input.select(
|
199 |
-
|
200 |
inputs=reranking_columns_to_show_input,
|
201 |
outputs=reranker_leaderboard
|
202 |
)
|
|
|
105 |
def reranking_search_leaderboard(model_name, columns_to_show):
|
106 |
return search_leaderboard(reranking_df, model_name, columns_to_show)
|
107 |
|
108 |
+
def update_retrieval_columns_to_show(columns_to_show):
|
109 |
+
global retrieval_df
|
110 |
+
dummy_df = retrieval_df.loc[:, columns_to_show]
|
111 |
+
columns_widths = [400] + [150] * (len(columns_to_show) - 1)
|
112 |
+
return gr.update(value=dummy_df, column_widths=columns_widths)
|
113 |
+
|
114 |
+
def update_reranker_columns_to_show(columns_to_show):
|
115 |
+
global reranking_df
|
116 |
+
dummy_df = reranking_df.loc[:, columns_to_show]
|
117 |
+
columns_widths = [400] + [150] * (len(columns_to_show) - 1)
|
118 |
+
return gr.update(value=dummy_df, column_widths=columns_widths)
|
119 |
|
120 |
def main():
|
121 |
global retrieval_df, reranking_df
|
|
|
123 |
# Prepare retrieval dataframe
|
124 |
retrieval_df = load_retrieval_results(True, "Web Search Dataset (Overall Score)", ["Revision", "Precision", "Task"])
|
125 |
retrieval_columns_to_show = ["Model", "Web Search Dataset (Overall Score)", "Model Size (MB)", "Embedding Dimension", "Max Tokens", "Num Likes"]
|
126 |
+
|
127 |
retrieval_cols = retrieval_df.columns.tolist() # cache columns
|
128 |
|
129 |
# Prepare reranking dataframe
|
130 |
reranking_df = load_reranking_results(True, sort_col="Overall Score", drop_cols=["Revision", "Precision", "Task"])
|
131 |
reranking_columns_to_show = ["Model", "Overall Score", "Model Parameters (in Millions)", "Embedding Dimensions", "Downloads Last Month", "MRR", "nDCG", "MAP"]
|
132 |
+
reranking_columns_widths = [400, 150, 150, 150, 150, 150, 150]
|
133 |
reranking_cols = reranking_df.columns.tolist() # cache columns
|
134 |
|
135 |
with gr.Blocks() as demo:
|
|
|
155 |
retrieval_leaderboard = gr.Dataframe(
|
156 |
value=retrieval_df[retrieval_columns_to_show],
|
157 |
datatype="markdown",
|
158 |
+
wrap=False,
|
159 |
show_fullscreen_button=True,
|
160 |
+
interactive=False,
|
161 |
+
column_widths=reranking_columns_widths
|
162 |
)
|
163 |
|
164 |
# Submit the search box and the leaderboard
|
|
|
168 |
outputs=retrieval_leaderboard
|
169 |
)
|
170 |
retrieval_columns_to_show_input.select(
|
171 |
+
update_retrieval_columns_to_show,
|
172 |
inputs=retrieval_columns_to_show_input,
|
173 |
outputs=retrieval_leaderboard
|
174 |
)
|
|
|
198 |
reranker_leaderboard = gr.Dataframe(
|
199 |
value=reranking_df[reranking_columns_to_show],
|
200 |
datatype="markdown",
|
201 |
+
wrap=False,
|
202 |
show_fullscreen_button=True,
|
203 |
interactive=False,
|
204 |
+
column_widths=reranking_columns_widths
|
205 |
)
|
206 |
|
207 |
# Submit the search box and the leaderboard
|
|
|
211 |
outputs=reranker_leaderboard
|
212 |
)
|
213 |
reranking_columns_to_show_input.select(
|
214 |
+
update_reranker_columns_to_show,
|
215 |
inputs=reranking_columns_to_show_input,
|
216 |
outputs=reranker_leaderboard
|
217 |
)
|