MohamedRashad commited on
Commit
e9e4a75
·
1 Parent(s): 7d5aa22

Add functions to update displayed columns and their widths in retrieval and reranking leaderboards

Browse files
Files changed (1) hide show
  1. app.py +20 -5
app.py CHANGED
@@ -105,6 +105,17 @@ def retrieval_search_leaderboard(model_name, columns_to_show):
105
  def reranking_search_leaderboard(model_name, columns_to_show):
106
  return search_leaderboard(reranking_df, model_name, columns_to_show)
107
 
 
 
 
 
 
 
 
 
 
 
 
108
 
109
  def main():
110
  global retrieval_df, reranking_df
@@ -112,11 +123,13 @@ def main():
112
  # Prepare retrieval dataframe
113
  retrieval_df = load_retrieval_results(True, "Web Search Dataset (Overall Score)", ["Revision", "Precision", "Task"])
114
  retrieval_columns_to_show = ["Model", "Web Search Dataset (Overall Score)", "Model Size (MB)", "Embedding Dimension", "Max Tokens", "Num Likes"]
 
115
  retrieval_cols = retrieval_df.columns.tolist() # cache columns
116
 
117
  # Prepare reranking dataframe
118
  reranking_df = load_reranking_results(True, sort_col="Overall Score", drop_cols=["Revision", "Precision", "Task"])
119
  reranking_columns_to_show = ["Model", "Overall Score", "Model Parameters (in Millions)", "Embedding Dimensions", "Downloads Last Month", "MRR", "nDCG", "MAP"]
 
120
  reranking_cols = reranking_df.columns.tolist() # cache columns
121
 
122
  with gr.Blocks() as demo:
@@ -142,9 +155,10 @@ def main():
142
  retrieval_leaderboard = gr.Dataframe(
143
  value=retrieval_df[retrieval_columns_to_show],
144
  datatype="markdown",
145
- wrap=True,
146
  show_fullscreen_button=True,
147
- interactive=False
 
148
  )
149
 
150
  # Submit the search box and the leaderboard
@@ -154,7 +168,7 @@ def main():
154
  outputs=retrieval_leaderboard
155
  )
156
  retrieval_columns_to_show_input.select(
157
- lambda columns: retrieval_df.loc[:, columns],
158
  inputs=retrieval_columns_to_show_input,
159
  outputs=retrieval_leaderboard
160
  )
@@ -184,9 +198,10 @@ def main():
184
  reranker_leaderboard = gr.Dataframe(
185
  value=reranking_df[reranking_columns_to_show],
186
  datatype="markdown",
187
- wrap=True,
188
  show_fullscreen_button=True,
189
  interactive=False,
 
190
  )
191
 
192
  # Submit the search box and the leaderboard
@@ -196,7 +211,7 @@ def main():
196
  outputs=reranker_leaderboard
197
  )
198
  reranking_columns_to_show_input.select(
199
- lambda columns: reranking_df.loc[:, columns],
200
  inputs=reranking_columns_to_show_input,
201
  outputs=reranker_leaderboard
202
  )
 
105
  def reranking_search_leaderboard(model_name, columns_to_show):
106
  return search_leaderboard(reranking_df, model_name, columns_to_show)
107
 
108
+ def update_retrieval_columns_to_show(columns_to_show):
109
+ global retrieval_df
110
+ dummy_df = retrieval_df.loc[:, columns_to_show]
111
+ columns_widths = [400] + [150] * (len(columns_to_show) - 1)
112
+ return gr.update(value=dummy_df, column_widths=columns_widths)
113
+
114
+ def update_reranker_columns_to_show(columns_to_show):
115
+ global reranking_df
116
+ dummy_df = reranking_df.loc[:, columns_to_show]
117
+ columns_widths = [400] + [150] * (len(columns_to_show) - 1)
118
+ return gr.update(value=dummy_df, column_widths=columns_widths)
119
 
120
  def main():
121
  global retrieval_df, reranking_df
 
123
  # Prepare retrieval dataframe
124
  retrieval_df = load_retrieval_results(True, "Web Search Dataset (Overall Score)", ["Revision", "Precision", "Task"])
125
  retrieval_columns_to_show = ["Model", "Web Search Dataset (Overall Score)", "Model Size (MB)", "Embedding Dimension", "Max Tokens", "Num Likes"]
126
+
127
  retrieval_cols = retrieval_df.columns.tolist() # cache columns
128
 
129
  # Prepare reranking dataframe
130
  reranking_df = load_reranking_results(True, sort_col="Overall Score", drop_cols=["Revision", "Precision", "Task"])
131
  reranking_columns_to_show = ["Model", "Overall Score", "Model Parameters (in Millions)", "Embedding Dimensions", "Downloads Last Month", "MRR", "nDCG", "MAP"]
132
+ reranking_columns_widths = [400, 150, 150, 150, 150, 150, 150]
133
  reranking_cols = reranking_df.columns.tolist() # cache columns
134
 
135
  with gr.Blocks() as demo:
 
155
  retrieval_leaderboard = gr.Dataframe(
156
  value=retrieval_df[retrieval_columns_to_show],
157
  datatype="markdown",
158
+ wrap=False,
159
  show_fullscreen_button=True,
160
+ interactive=False,
161
+ column_widths=reranking_columns_widths
162
  )
163
 
164
  # Submit the search box and the leaderboard
 
168
  outputs=retrieval_leaderboard
169
  )
170
  retrieval_columns_to_show_input.select(
171
+ update_retrieval_columns_to_show,
172
  inputs=retrieval_columns_to_show_input,
173
  outputs=retrieval_leaderboard
174
  )
 
198
  reranker_leaderboard = gr.Dataframe(
199
  value=reranking_df[reranking_columns_to_show],
200
  datatype="markdown",
201
+ wrap=False,
202
  show_fullscreen_button=True,
203
  interactive=False,
204
+ column_widths=reranking_columns_widths
205
  )
206
 
207
  # Submit the search box and the leaderboard
 
211
  outputs=reranker_leaderboard
212
  )
213
  reranking_columns_to_show_input.select(
214
+ update_reranker_columns_to_show,
215
  inputs=reranking_columns_to_show_input,
216
  outputs=reranker_leaderboard
217
  )