Spaces:
Running
on
Zero
Running
on
Zero
import subprocess | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
import os | |
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer | |
import torch | |
from threading import Thread | |
import spaces | |
# Load model directly | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
tokenizer = AutoTokenizer.from_pretrained("Navid-AI/Mulhem-1-Mini", token=os.getenv("HF_TOKEN")) | |
model = AutoModelForCausalLM.from_pretrained("Navid-AI/Mulhem-1-Mini", torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2", token=os.getenv("HF_TOKEN")).to(device) | |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
enable_reasoning, | |
system_message, | |
max_tokens, | |
temperature, | |
repetition_penalty, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0].strip()}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1].strip()}) | |
messages.append({"role": "user", "content": message}) | |
print(messages) | |
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True, enable_reasoning=enable_reasoning, return_dict=True).to(device) | |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty) | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
response = "" | |
for new_text in streamer: | |
response += new_text | |
yield response | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Checkbox(label="Enable reasoning", value=False), | |
gr.Textbox(value="ุฃูุช ู ูููู . ุฐูุงุก ุงุตุทูุงุนู ุชู ุฅูุดุงุคู ู ู ุดุฑูุฉ ูููุฏ ูุฅููุงู ูุชุญููุฒ ุงูู ุณุชุฎุฏู ูู ุนูู ุงูุชุนููู ุ ุงููู ูุ ูุชุญููู ุฃูุฏุงููู .", label="System message"), | |
gr.Slider(minimum=1, maximum=8192, value=2048, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.1, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=2.0, value=1.25, step=0.05, label="Repetition penalty"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() |