Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,18 @@
|
|
1 |
import subprocess
|
2 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
3 |
|
|
|
4 |
import gradio as gr
|
5 |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
6 |
import torch
|
7 |
-
import os
|
8 |
from threading import Thread
|
9 |
|
|
|
10 |
# Load model directly
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
tokenizer = AutoTokenizer.from_pretrained("Navid-AI/Mulhem-1-Mini", token=os.getenv("HF_TOKEN"))
|
13 |
-
model = AutoModelForCausalLM.from_pretrained("Navid-AI/Mulhem-1-Mini", torch_dtype=torch.bfloat16, token=os.getenv("HF_TOKEN")).to(device)
|
14 |
-
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True)
|
15 |
|
16 |
def respond(
|
17 |
message,
|
@@ -20,36 +21,38 @@ def respond(
|
|
20 |
system_message,
|
21 |
max_tokens,
|
22 |
temperature,
|
|
|
23 |
top_p,
|
24 |
):
|
25 |
messages = [{"role": "system", "content": system_message}]
|
26 |
|
27 |
for val in history:
|
28 |
if val[0]:
|
29 |
-
messages.append({"role": "user", "content": val[0]})
|
30 |
if val[1]:
|
31 |
-
messages.append({"role": "assistant", "content": val[1]})
|
32 |
|
33 |
messages.append({"role": "user", "content": message})
|
34 |
-
|
35 |
-
|
|
|
36 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
37 |
|
38 |
thread.start()
|
|
|
39 |
for new_text in streamer:
|
40 |
-
|
|
|
41 |
|
42 |
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
demo = gr.ChatInterface(
|
47 |
respond,
|
48 |
additional_inputs=[
|
49 |
gr.Checkbox(label="Enable reasoning", value=False),
|
50 |
gr.Textbox(value="ุฃูุช ู
ูููู
. ุฐูุงุก ุงุตุทูุงุนู ุชู
ุฅูุดุงุคู ู
ู ุดุฑูุฉ ูููุฏ ูุฅููุงู
ูุชุญููุฒ ุงูู
ุณุชุฎุฏู
ูู ุนูู ุงูุชุนููู
ุ ุงููู
ูุ ูุชุญููู ุฃูุฏุงููู
.", label="System message"),
|
51 |
gr.Slider(minimum=1, maximum=8192, value=2048, step=1, label="Max new tokens"),
|
52 |
-
gr.Slider(minimum=0.1, maximum=
|
|
|
53 |
gr.Slider(
|
54 |
minimum=0.1,
|
55 |
maximum=1.0,
|
|
|
1 |
import subprocess
|
2 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
3 |
|
4 |
+
import os
|
5 |
import gradio as gr
|
6 |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
7 |
import torch
|
|
|
8 |
from threading import Thread
|
9 |
|
10 |
+
|
11 |
# Load model directly
|
12 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
tokenizer = AutoTokenizer.from_pretrained("Navid-AI/Mulhem-1-Mini", token=os.getenv("HF_TOKEN"))
|
14 |
+
model = AutoModelForCausalLM.from_pretrained("Navid-AI/Mulhem-1-Mini", torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2", token=os.getenv("HF_TOKEN")).to(device)
|
15 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
16 |
|
17 |
def respond(
|
18 |
message,
|
|
|
21 |
system_message,
|
22 |
max_tokens,
|
23 |
temperature,
|
24 |
+
repetition_penalty,
|
25 |
top_p,
|
26 |
):
|
27 |
messages = [{"role": "system", "content": system_message}]
|
28 |
|
29 |
for val in history:
|
30 |
if val[0]:
|
31 |
+
messages.append({"role": "user", "content": val[0].strip()})
|
32 |
if val[1]:
|
33 |
+
messages.append({"role": "assistant", "content": val[1].strip()})
|
34 |
|
35 |
messages.append({"role": "user", "content": message})
|
36 |
+
print(messages)
|
37 |
+
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True, enable_reasoning=enable_reasoning, return_dict=True).to(device)
|
38 |
+
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty)
|
39 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
40 |
|
41 |
thread.start()
|
42 |
+
response = ""
|
43 |
for new_text in streamer:
|
44 |
+
response += new_text
|
45 |
+
yield response
|
46 |
|
47 |
|
|
|
|
|
|
|
48 |
demo = gr.ChatInterface(
|
49 |
respond,
|
50 |
additional_inputs=[
|
51 |
gr.Checkbox(label="Enable reasoning", value=False),
|
52 |
gr.Textbox(value="ุฃูุช ู
ูููู
. ุฐูุงุก ุงุตุทูุงุนู ุชู
ุฅูุดุงุคู ู
ู ุดุฑูุฉ ูููุฏ ูุฅููุงู
ูุชุญููุฒ ุงูู
ุณุชุฎุฏู
ูู ุนูู ุงูุชุนููู
ุ ุงููู
ูุ ูุชุญููู ุฃูุฏุงููู
.", label="System message"),
|
53 |
gr.Slider(minimum=1, maximum=8192, value=2048, step=1, label="Max new tokens"),
|
54 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.1, step=0.1, label="Temperature"),
|
55 |
+
gr.Slider(minimum=0.1, maximum=2.0, value=1.25, step=0.05, label="Repetition penalty"),
|
56 |
gr.Slider(
|
57 |
minimum=0.1,
|
58 |
maximum=1.0,
|