Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,773 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import plotly.graph_objects as go
|
5 |
+
import plotly.express as px
|
6 |
+
from datetime import datetime
|
7 |
+
import json
|
8 |
+
import random
|
9 |
+
import re
|
10 |
+
from PIL import Image
|
11 |
+
import io
|
12 |
+
import base64
|
13 |
+
|
14 |
+
# Page configuration
|
15 |
+
st.set_page_config(
|
16 |
+
page_title="AI & Data Science Learning Platform",
|
17 |
+
page_icon="π€",
|
18 |
+
layout="wide",
|
19 |
+
initial_sidebar_state="expanded"
|
20 |
+
)
|
21 |
+
|
22 |
+
# Initialize session state
|
23 |
+
if 'user_progress' not in st.session_state:
|
24 |
+
st.session_state.user_progress = {
|
25 |
+
'completed_lessons': [],
|
26 |
+
'quiz_scores': {},
|
27 |
+
'projects_completed': [],
|
28 |
+
'skill_level': 'Beginner'
|
29 |
+
}
|
30 |
+
|
31 |
+
if 'current_quiz' not in st.session_state:
|
32 |
+
st.session_state.current_quiz = None
|
33 |
+
|
34 |
+
# Custom CSS
|
35 |
+
st.markdown("""
|
36 |
+
<style>
|
37 |
+
.main-header {
|
38 |
+
font-size: 3rem;
|
39 |
+
color: #1e3d59;
|
40 |
+
text-align: center;
|
41 |
+
margin-bottom: 2rem;
|
42 |
+
}
|
43 |
+
.sub-header {
|
44 |
+
font-size: 1.5rem;
|
45 |
+
color: #ff6e40;
|
46 |
+
margin-top: 1rem;
|
47 |
+
}
|
48 |
+
.info-box {
|
49 |
+
background-color: #f5f5f5;
|
50 |
+
padding: 1rem;
|
51 |
+
border-radius: 10px;
|
52 |
+
margin: 1rem 0;
|
53 |
+
}
|
54 |
+
.success-box {
|
55 |
+
background-color: #d4edda;
|
56 |
+
padding: 1rem;
|
57 |
+
border-radius: 10px;
|
58 |
+
margin: 1rem 0;
|
59 |
+
}
|
60 |
+
.warning-box {
|
61 |
+
background-color: #fff3cd;
|
62 |
+
padding: 1rem;
|
63 |
+
border-radius: 10px;
|
64 |
+
margin: 1rem 0;
|
65 |
+
}
|
66 |
+
</style>
|
67 |
+
""", unsafe_allow_html=True)
|
68 |
+
|
69 |
+
# Learning content database
|
70 |
+
LEARNING_MODULES = {
|
71 |
+
"Beginner": {
|
72 |
+
"Python Fundamentals": {
|
73 |
+
"topics": ["Variables & Data Types", "Control Flow", "Functions", "Data Structures"],
|
74 |
+
"duration": "2 weeks",
|
75 |
+
"projects": ["Calculator App", "To-Do List Manager"]
|
76 |
+
},
|
77 |
+
"Data Science Basics": {
|
78 |
+
"topics": ["NumPy", "Pandas", "Data Visualization", "Statistics"],
|
79 |
+
"duration": "3 weeks",
|
80 |
+
"projects": ["EDA on Titanic Dataset", "Sales Data Analysis"]
|
81 |
+
},
|
82 |
+
"Machine Learning Introduction": {
|
83 |
+
"topics": ["Supervised Learning", "Regression", "Classification", "Model Evaluation"],
|
84 |
+
"duration": "4 weeks",
|
85 |
+
"projects": ["House Price Prediction", "Iris Classification"]
|
86 |
+
}
|
87 |
+
},
|
88 |
+
"Intermediate": {
|
89 |
+
"Advanced ML": {
|
90 |
+
"topics": ["Ensemble Methods", "Feature Engineering", "Cross-Validation", "Hyperparameter Tuning"],
|
91 |
+
"duration": "4 weeks",
|
92 |
+
"projects": ["Customer Churn Prediction", "Credit Risk Assessment"]
|
93 |
+
},
|
94 |
+
"Deep Learning": {
|
95 |
+
"topics": ["Neural Networks", "CNNs", "RNNs", "Transfer Learning"],
|
96 |
+
"duration": "6 weeks",
|
97 |
+
"projects": ["Image Classification", "Text Sentiment Analysis"]
|
98 |
+
},
|
99 |
+
"NLP Fundamentals": {
|
100 |
+
"topics": ["Text Processing", "Word Embeddings", "Named Entity Recognition", "Topic Modeling"],
|
101 |
+
"duration": "4 weeks",
|
102 |
+
"projects": ["Spam Detection", "Document Clustering"]
|
103 |
+
}
|
104 |
+
},
|
105 |
+
"Advanced": {
|
106 |
+
"Advanced Deep Learning": {
|
107 |
+
"topics": ["GANs", "Autoencoders", "Transformers", "BERT/GPT"],
|
108 |
+
"duration": "8 weeks",
|
109 |
+
"projects": ["Image Generation", "Custom Chatbot"]
|
110 |
+
},
|
111 |
+
"MLOps": {
|
112 |
+
"topics": ["Model Deployment", "Docker", "CI/CD", "Model Monitoring"],
|
113 |
+
"duration": "4 weeks",
|
114 |
+
"projects": ["End-to-End ML Pipeline", "Model API Development"]
|
115 |
+
},
|
116 |
+
"Research & Innovation": {
|
117 |
+
"topics": ["Research Papers", "State-of-the-art Models", "Custom Architectures"],
|
118 |
+
"duration": "Ongoing",
|
119 |
+
"projects": ["Research Paper Implementation", "Novel Model Development"]
|
120 |
+
}
|
121 |
+
}
|
122 |
+
}
|
123 |
+
|
124 |
+
# Quiz questions database
|
125 |
+
QUIZ_DATABASE = {
|
126 |
+
"Python Fundamentals": [
|
127 |
+
{
|
128 |
+
"question": "What is the output of: print(type([1, 2, 3]))?",
|
129 |
+
"options": ["<class 'list'>", "<class 'tuple'>", "<class 'dict'>", "<class 'set'>"],
|
130 |
+
"correct": 0
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"question": "Which method is used to add an element to a list?",
|
134 |
+
"options": ["add()", "append()", "insert_end()", "push()"],
|
135 |
+
"correct": 1
|
136 |
+
}
|
137 |
+
],
|
138 |
+
"Machine Learning": [
|
139 |
+
{
|
140 |
+
"question": "Which metric is best for imbalanced classification?",
|
141 |
+
"options": ["Accuracy", "F1-Score", "MSE", "MAE"],
|
142 |
+
"correct": 1
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"question": "What does overfitting mean?",
|
146 |
+
"options": [
|
147 |
+
"Model performs poorly on training data",
|
148 |
+
"Model performs well on training but poorly on test data",
|
149 |
+
"Model performs well on both training and test data",
|
150 |
+
"Model has too few parameters"
|
151 |
+
],
|
152 |
+
"correct": 1
|
153 |
+
}
|
154 |
+
]
|
155 |
+
}
|
156 |
+
|
157 |
+
# Job application templates
|
158 |
+
JOB_TEMPLATES = {
|
159 |
+
"Data Scientist": {
|
160 |
+
"skills": ["Python", "Machine Learning", "Statistics", "SQL", "Data Visualization"],
|
161 |
+
"keywords": ["predictive modeling", "statistical analysis", "A/B testing", "data pipeline"]
|
162 |
+
},
|
163 |
+
"ML Engineer": {
|
164 |
+
"skills": ["Python", "TensorFlow/PyTorch", "MLOps", "Docker", "Cloud Platforms"],
|
165 |
+
"keywords": ["model deployment", "scalability", "optimization", "production systems"]
|
166 |
+
},
|
167 |
+
"Data Analyst": {
|
168 |
+
"skills": ["SQL", "Excel", "Tableau/PowerBI", "Python/R", "Statistics"],
|
169 |
+
"keywords": ["data insights", "reporting", "dashboards", "business intelligence"]
|
170 |
+
}
|
171 |
+
}
|
172 |
+
|
173 |
+
def create_mind_map(topic, concepts):
|
174 |
+
"""Create an interactive mind map visualization"""
|
175 |
+
fig = go.Figure()
|
176 |
+
|
177 |
+
# Center node
|
178 |
+
fig.add_trace(go.Scatter(
|
179 |
+
x=[0], y=[0],
|
180 |
+
mode='markers+text',
|
181 |
+
marker=dict(size=30, color='#ff6e40'),
|
182 |
+
text=[topic],
|
183 |
+
textposition="middle center",
|
184 |
+
textfont=dict(size=14, color='white'),
|
185 |
+
hoverinfo='text',
|
186 |
+
hovertext=topic
|
187 |
+
))
|
188 |
+
|
189 |
+
# Concept nodes
|
190 |
+
n = len(concepts)
|
191 |
+
angles = np.linspace(0, 2*np.pi, n, endpoint=False)
|
192 |
+
|
193 |
+
for i, (concept, details) in enumerate(concepts.items()):
|
194 |
+
x = 2 * np.cos(angles[i])
|
195 |
+
y = 2 * np.sin(angles[i])
|
196 |
+
|
197 |
+
# Add edge
|
198 |
+
fig.add_trace(go.Scatter(
|
199 |
+
x=[0, x], y=[0, y],
|
200 |
+
mode='lines',
|
201 |
+
line=dict(color='#e0e0e0', width=2),
|
202 |
+
hoverinfo='none',
|
203 |
+
showlegend=False
|
204 |
+
))
|
205 |
+
|
206 |
+
# Add concept node
|
207 |
+
fig.add_trace(go.Scatter(
|
208 |
+
x=[x], y=[y],
|
209 |
+
mode='markers+text',
|
210 |
+
marker=dict(size=25, color='#1e3d59'),
|
211 |
+
text=[concept],
|
212 |
+
textposition="top center",
|
213 |
+
textfont=dict(size=10),
|
214 |
+
hoverinfo='text',
|
215 |
+
hovertext=f"{concept}: {details}",
|
216 |
+
showlegend=False
|
217 |
+
))
|
218 |
+
|
219 |
+
fig.update_layout(
|
220 |
+
showlegend=False,
|
221 |
+
height=400,
|
222 |
+
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
|
223 |
+
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
|
224 |
+
paper_bgcolor='white',
|
225 |
+
plot_bgcolor='white',
|
226 |
+
margin=dict(l=0, r=0, t=0, b=0)
|
227 |
+
)
|
228 |
+
|
229 |
+
return fig
|
230 |
+
|
231 |
+
def analyze_resume_ats(resume_text, job_role):
|
232 |
+
"""Analyze resume for ATS compatibility"""
|
233 |
+
template = JOB_TEMPLATES.get(job_role, JOB_TEMPLATES["Data Scientist"])
|
234 |
+
|
235 |
+
# Check for keywords
|
236 |
+
found_skills = []
|
237 |
+
missing_skills = []
|
238 |
+
|
239 |
+
for skill in template["skills"]:
|
240 |
+
if skill.lower() in resume_text.lower():
|
241 |
+
found_skills.append(skill)
|
242 |
+
else:
|
243 |
+
missing_skills.append(skill)
|
244 |
+
|
245 |
+
# Check for action keywords
|
246 |
+
found_keywords = []
|
247 |
+
for keyword in template["keywords"]:
|
248 |
+
if keyword.lower() in resume_text.lower():
|
249 |
+
found_keywords.append(keyword)
|
250 |
+
|
251 |
+
# Calculate ATS score
|
252 |
+
skill_score = len(found_skills) / len(template["skills"]) * 50
|
253 |
+
keyword_score = min(len(found_keywords) / len(template["keywords"]) * 50, 50)
|
254 |
+
total_score = skill_score + keyword_score
|
255 |
+
|
256 |
+
return {
|
257 |
+
"score": total_score,
|
258 |
+
"found_skills": found_skills,
|
259 |
+
"missing_skills": missing_skills,
|
260 |
+
"found_keywords": found_keywords,
|
261 |
+
"recommendations": generate_recommendations(missing_skills, found_keywords, template["keywords"])
|
262 |
+
}
|
263 |
+
|
264 |
+
def generate_recommendations(missing_skills, found_keywords, all_keywords):
|
265 |
+
"""Generate resume improvement recommendations"""
|
266 |
+
recommendations = []
|
267 |
+
|
268 |
+
if missing_skills:
|
269 |
+
recommendations.append(f"Add these skills to your resume: {', '.join(missing_skills[:3])}")
|
270 |
+
|
271 |
+
missing_keywords = [k for k in all_keywords if k not in found_keywords]
|
272 |
+
if missing_keywords:
|
273 |
+
recommendations.append(f"Include keywords like: {', '.join(missing_keywords[:3])}")
|
274 |
+
|
275 |
+
if len(found_keywords) < 2:
|
276 |
+
recommendations.append("Use more action verbs and industry-specific terminology")
|
277 |
+
|
278 |
+
recommendations.append("Quantify your achievements with numbers and percentages")
|
279 |
+
recommendations.append("Keep resume format simple and ATS-friendly (avoid complex formatting)")
|
280 |
+
|
281 |
+
return recommendations
|
282 |
+
|
283 |
+
def generate_quiz(topic, num_questions=5):
|
284 |
+
"""Generate quiz questions for a topic"""
|
285 |
+
# For demo, using predefined questions or generating random ones
|
286 |
+
if topic in QUIZ_DATABASE:
|
287 |
+
return QUIZ_DATABASE[topic][:num_questions]
|
288 |
+
else:
|
289 |
+
# Generate generic questions
|
290 |
+
questions = []
|
291 |
+
for i in range(num_questions):
|
292 |
+
questions.append({
|
293 |
+
"question": f"Sample question {i+1} about {topic}?",
|
294 |
+
"options": ["Option A", "Option B", "Option C", "Option D"],
|
295 |
+
"correct": random.randint(0, 3)
|
296 |
+
})
|
297 |
+
return questions
|
298 |
+
|
299 |
+
def calculate_learning_path(current_level, target_role):
|
300 |
+
"""Calculate personalized learning path"""
|
301 |
+
path = []
|
302 |
+
|
303 |
+
if current_level == "Beginner":
|
304 |
+
path.extend(["Python Fundamentals", "Data Science Basics", "Machine Learning Introduction"])
|
305 |
+
elif current_level == "Intermediate":
|
306 |
+
path.extend(["Advanced ML", "Deep Learning"])
|
307 |
+
|
308 |
+
# Add role-specific modules
|
309 |
+
if "Engineer" in target_role:
|
310 |
+
path.append("MLOps")
|
311 |
+
elif "Scientist" in target_role:
|
312 |
+
path.append("Advanced Statistics")
|
313 |
+
elif "Analyst" in target_role:
|
314 |
+
path.append("Business Intelligence")
|
315 |
+
|
316 |
+
return path
|
317 |
+
|
318 |
+
# Sidebar navigation
|
319 |
+
with st.sidebar:
|
320 |
+
st.markdown("## π Learning Platform")
|
321 |
+
|
322 |
+
menu = st.selectbox(
|
323 |
+
"Navigation",
|
324 |
+
["Dashboard", "Learn", "Practice", "Projects", "Quizzes",
|
325 |
+
"Career Guide", "Resume Builder", "Mind Maps", "Progress"]
|
326 |
+
)
|
327 |
+
|
328 |
+
st.markdown("---")
|
329 |
+
|
330 |
+
# User profile
|
331 |
+
st.markdown("### π€ User Profile")
|
332 |
+
skill_level = st.selectbox("Skill Level", ["Beginner", "Intermediate", "Advanced"])
|
333 |
+
st.session_state.user_progress['skill_level'] = skill_level
|
334 |
+
|
335 |
+
target_role = st.selectbox(
|
336 |
+
"Target Role",
|
337 |
+
["Data Scientist", "ML Engineer", "Data Analyst", "AI Researcher"]
|
338 |
+
)
|
339 |
+
|
340 |
+
st.markdown("---")
|
341 |
+
st.markdown("### π Quick Stats")
|
342 |
+
st.metric("Completed Lessons", len(st.session_state.user_progress['completed_lessons']))
|
343 |
+
st.metric("Projects Done", len(st.session_state.user_progress['projects_completed']))
|
344 |
+
|
345 |
+
avg_score = np.mean(list(st.session_state.user_progress['quiz_scores'].values())) if st.session_state.user_progress['quiz_scores'] else 0
|
346 |
+
st.metric("Avg Quiz Score", f"{avg_score:.1f}%")
|
347 |
+
|
348 |
+
# Main content area
|
349 |
+
if menu == "Dashboard":
|
350 |
+
st.markdown("<h1 class='main-header'>π AI & Data Science Learning Platform</h1>", unsafe_allow_html=True)
|
351 |
+
|
352 |
+
col1, col2, col3 = st.columns(3)
|
353 |
+
|
354 |
+
with col1:
|
355 |
+
st.markdown("### π Learning Modules")
|
356 |
+
modules_count = sum(len(modules) for modules in LEARNING_MODULES.values())
|
357 |
+
st.metric("Total Modules", modules_count)
|
358 |
+
st.markdown("Comprehensive curriculum from basics to advanced")
|
359 |
+
|
360 |
+
with col2:
|
361 |
+
st.markdown("### π― Projects")
|
362 |
+
projects_count = sum(
|
363 |
+
len(module_info.get("projects", []))
|
364 |
+
for level_modules in LEARNING_MODULES.values()
|
365 |
+
for module_info in level_modules.values()
|
366 |
+
)
|
367 |
+
st.metric("Hands-on Projects", projects_count)
|
368 |
+
st.markdown("Real-world projects to build your portfolio")
|
369 |
+
|
370 |
+
with col3:
|
371 |
+
st.markdown("### πΌ Career Support")
|
372 |
+
st.metric("Job Roles Covered", len(JOB_TEMPLATES))
|
373 |
+
st.markdown("Resume optimization and interview prep")
|
374 |
+
|
375 |
+
# Learning path recommendation
|
376 |
+
st.markdown("---")
|
377 |
+
st.markdown("### πΊοΈ Your Personalized Learning Path")
|
378 |
+
|
379 |
+
learning_path = calculate_learning_path(skill_level, target_role)
|
380 |
+
|
381 |
+
progress_cols = st.columns(len(learning_path))
|
382 |
+
for i, module in enumerate(learning_path):
|
383 |
+
with progress_cols[i]:
|
384 |
+
if module in st.session_state.user_progress['completed_lessons']:
|
385 |
+
st.success(f"β
{module}")
|
386 |
+
else:
|
387 |
+
st.info(f"π {module}")
|
388 |
+
|
389 |
+
# Recent achievements
|
390 |
+
st.markdown("---")
|
391 |
+
st.markdown("### π Recent Achievements")
|
392 |
+
|
393 |
+
if st.session_state.user_progress['completed_lessons']:
|
394 |
+
for lesson in st.session_state.user_progress['completed_lessons'][-3:]:
|
395 |
+
st.markdown(f"- Completed: **{lesson}**")
|
396 |
+
else:
|
397 |
+
st.markdown("Start learning to earn achievements!")
|
398 |
+
|
399 |
+
elif menu == "Learn":
|
400 |
+
st.markdown("<h1 class='main-header'>π Learning Modules</h1>", unsafe_allow_html=True)
|
401 |
+
|
402 |
+
selected_level = st.selectbox("Select Level", ["Beginner", "Intermediate", "Advanced"])
|
403 |
+
|
404 |
+
modules = LEARNING_MODULES[selected_level]
|
405 |
+
|
406 |
+
for module_name, module_info in modules.items():
|
407 |
+
with st.expander(f"π {module_name} - {module_info['duration']}"):
|
408 |
+
st.markdown("**Topics Covered:**")
|
409 |
+
for topic in module_info['topics']:
|
410 |
+
st.markdown(f"- {topic}")
|
411 |
+
|
412 |
+
st.markdown("**Projects:**")
|
413 |
+
for project in module_info['projects']:
|
414 |
+
st.markdown(f"- π οΈ {project}")
|
415 |
+
|
416 |
+
col1, col2 = st.columns(2)
|
417 |
+
with col1:
|
418 |
+
if st.button(f"Start Learning", key=f"learn_{module_name}"):
|
419 |
+
st.session_state.user_progress['completed_lessons'].append(module_name)
|
420 |
+
st.success(f"Started learning {module_name}!")
|
421 |
+
|
422 |
+
with col2:
|
423 |
+
if st.button(f"View Resources", key=f"resources_{module_name}"):
|
424 |
+
st.info("Resources: Documentation, Videos, Articles, Code Examples")
|
425 |
+
|
426 |
+
elif menu == "Practice":
|
427 |
+
st.markdown("<h1 class='main-header'>π» Practice Coding</h1>", unsafe_allow_html=True)
|
428 |
+
|
429 |
+
practice_type = st.selectbox(
|
430 |
+
"Select Practice Type",
|
431 |
+
["Python Basics", "Data Manipulation", "Machine Learning", "Deep Learning", "SQL"]
|
432 |
+
)
|
433 |
+
|
434 |
+
st.markdown("### π Coding Challenge")
|
435 |
+
|
436 |
+
challenges = {
|
437 |
+
"Python Basics": {
|
438 |
+
"title": "List Comprehension",
|
439 |
+
"problem": "Create a list of squares for numbers 1 to 10 using list comprehension",
|
440 |
+
"hint": "Use [x**2 for x in range(1, 11)]"
|
441 |
+
},
|
442 |
+
"Data Manipulation": {
|
443 |
+
"title": "Pandas DataFrame Operations",
|
444 |
+
"problem": "Filter a DataFrame to show only rows where 'age' > 25 and 'salary' > 50000",
|
445 |
+
"hint": "Use df[(df['age'] > 25) & (df['salary'] > 50000)]"
|
446 |
+
},
|
447 |
+
"Machine Learning": {
|
448 |
+
"title": "Train-Test Split",
|
449 |
+
"problem": "Split your data into 80% training and 20% testing sets",
|
450 |
+
"hint": "Use train_test_split from sklearn.model_selection"
|
451 |
+
}
|
452 |
+
}
|
453 |
+
|
454 |
+
if practice_type in challenges:
|
455 |
+
challenge = challenges[practice_type]
|
456 |
+
st.markdown(f"**Challenge:** {challenge['title']}")
|
457 |
+
st.markdown(f"**Problem:** {challenge['problem']}")
|
458 |
+
|
459 |
+
code_input = st.text_area("Write your code here:", height=200)
|
460 |
+
|
461 |
+
col1, col2 = st.columns(2)
|
462 |
+
with col1:
|
463 |
+
if st.button("Run Code"):
|
464 |
+
st.success("Code executed successfully! (Simulation)")
|
465 |
+
st.code("Output: [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]")
|
466 |
+
|
467 |
+
with col2:
|
468 |
+
if st.button("Show Hint"):
|
469 |
+
st.info(f"Hint: {challenge['hint']}")
|
470 |
+
|
471 |
+
elif menu == "Projects":
|
472 |
+
st.markdown("<h1 class='main-header'>π οΈ Hands-on Projects</h1>", unsafe_allow_html=True)
|
473 |
+
|
474 |
+
project_category = st.selectbox(
|
475 |
+
"Select Project Category",
|
476 |
+
["Beginner Projects", "Intermediate Projects", "Advanced Projects", "Portfolio Projects"]
|
477 |
+
)
|
478 |
+
|
479 |
+
projects = {
|
480 |
+
"Beginner Projects": [
|
481 |
+
{
|
482 |
+
"name": "Titanic Survival Prediction",
|
483 |
+
"description": "Predict passenger survival using logistic regression",
|
484 |
+
"skills": ["Pandas", "Scikit-learn", "Data Visualization"],
|
485 |
+
"difficulty": "ββ"
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"name": "Stock Price Analysis",
|
489 |
+
"description": "Analyze and visualize stock market trends",
|
490 |
+
"skills": ["Pandas", "Matplotlib", "Time Series"],
|
491 |
+
"difficulty": "ββ"
|
492 |
+
}
|
493 |
+
],
|
494 |
+
"Intermediate Projects": [
|
495 |
+
{
|
496 |
+
"name": "Customer Segmentation",
|
497 |
+
"description": "Segment customers using clustering algorithms",
|
498 |
+
"skills": ["K-Means", "PCA", "Feature Engineering"],
|
499 |
+
"difficulty": "βββ"
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"name": "Sentiment Analysis",
|
503 |
+
"description": "Analyze sentiment from product reviews",
|
504 |
+
"skills": ["NLP", "NLTK", "Classification"],
|
505 |
+
"difficulty": "βββ"
|
506 |
+
}
|
507 |
+
]
|
508 |
+
}
|
509 |
+
|
510 |
+
if project_category in projects:
|
511 |
+
for project in projects[project_category]:
|
512 |
+
with st.expander(f"π {project['name']} - {project['difficulty']}"):
|
513 |
+
st.markdown(f"**Description:** {project['description']}")
|
514 |
+
st.markdown("**Skills you'll learn:**")
|
515 |
+
for skill in project['skills']:
|
516 |
+
st.markdown(f"- {skill}")
|
517 |
+
|
518 |
+
col1, col2, col3 = st.columns(3)
|
519 |
+
with col1:
|
520 |
+
if st.button(f"Start Project", key=f"start_{project['name']}"):
|
521 |
+
st.session_state.user_progress['projects_completed'].append(project['name'])
|
522 |
+
st.success("Project started!")
|
523 |
+
|
524 |
+
with col2:
|
525 |
+
if st.button(f"View Solution", key=f"solution_{project['name']}"):
|
526 |
+
st.code("""
|
527 |
+
# Sample solution structure
|
528 |
+
import pandas as pd
|
529 |
+
from sklearn.model_selection import train_test_split
|
530 |
+
from sklearn.linear_model import LogisticRegression
|
531 |
+
|
532 |
+
# Load data
|
533 |
+
data = pd.read_csv('data.csv')
|
534 |
+
|
535 |
+
# Preprocessing
|
536 |
+
# ... your code here
|
537 |
+
|
538 |
+
# Model training
|
539 |
+
model = LogisticRegression()
|
540 |
+
model.fit(X_train, y_train)
|
541 |
+
|
542 |
+
# Evaluation
|
543 |
+
accuracy = model.score(X_test, y_test)
|
544 |
+
print(f'Accuracy: {accuracy}')
|
545 |
+
""")
|
546 |
+
|
547 |
+
with col3:
|
548 |
+
if st.button(f"Download Dataset", key=f"data_{project['name']}"):
|
549 |
+
st.info("Dataset downloaded! (Simulation)")
|
550 |
+
|
551 |
+
elif menu == "Quizzes":
|
552 |
+
st.markdown("<h1 class='main-header'>π Knowledge Assessment</h1>", unsafe_allow_html=True)
|
553 |
+
|
554 |
+
quiz_topic = st.selectbox(
|
555 |
+
"Select Quiz Topic",
|
556 |
+
["Python Fundamentals", "Machine Learning", "Deep Learning", "Statistics", "SQL"]
|
557 |
+
)
|
558 |
+
|
559 |
+
if st.button("Start Quiz"):
|
560 |
+
st.session_state.current_quiz = generate_quiz(quiz_topic, 5)
|
561 |
+
st.session_state.quiz_answers = {}
|
562 |
+
|
563 |
+
if st.session_state.current_quiz:
|
564 |
+
st.markdown(f"### Quiz: {quiz_topic}")
|
565 |
+
|
566 |
+
for i, q in enumerate(st.session_state.current_quiz):
|
567 |
+
st.markdown(f"**Question {i+1}:** {q['question']}")
|
568 |
+
answer = st.radio(
|
569 |
+
"Select your answer:",
|
570 |
+
q['options'],
|
571 |
+
key=f"q_{i}"
|
572 |
+
)
|
573 |
+
st.session_state.quiz_answers[i] = q['options'].index(answer) if answer else None
|
574 |
+
|
575 |
+
if st.button("Submit Quiz"):
|
576 |
+
score = 0
|
577 |
+
for i, q in enumerate(st.session_state.current_quiz):
|
578 |
+
if st.session_state.quiz_answers.get(i) == q['correct']:
|
579 |
+
score += 1
|
580 |
+
|
581 |
+
percentage = (score / len(st.session_state.current_quiz)) * 100
|
582 |
+
st.session_state.user_progress['quiz_scores'][quiz_topic] = percentage
|
583 |
+
|
584 |
+
if percentage >= 80:
|
585 |
+
st.success(f"Excellent! You scored {percentage:.0f}%")
|
586 |
+
elif percentage >= 60:
|
587 |
+
st.warning(f"Good job! You scored {percentage:.0f}%")
|
588 |
+
else:
|
589 |
+
st.error(f"Keep practicing! You scored {percentage:.0f}%")
|
590 |
+
|
591 |
+
# Show correct answers
|
592 |
+
st.markdown("### Correct Answers:")
|
593 |
+
for i, q in enumerate(st.session_state.current_quiz):
|
594 |
+
st.markdown(f"Q{i+1}: {q['options'][q['correct']]}")
|
595 |
+
|
596 |
+
elif menu == "Career Guide":
|
597 |
+
st.markdown("<h1 class='main-header'>πΌ Career Guidance</h1>", unsafe_allow_html=True)
|
598 |
+
|
599 |
+
tab1, tab2, tab3 = st.tabs(["Career Paths", "Skills Roadmap", "Interview Prep"])
|
600 |
+
|
601 |
+
with tab1:
|
602 |
+
st.markdown("### π― AI/Data Science Career Paths")
|
603 |
+
|
604 |
+
careers = {
|
605 |
+
"Data Scientist": {
|
606 |
+
"salary": "$120,000 - $180,000",
|
607 |
+
"skills": "Python, ML, Statistics, Communication",
|
608 |
+
"description": "Analyze complex data to help companies make decisions"
|
609 |
+
},
|
610 |
+
"ML Engineer": {
|
611 |
+
"salary": "$130,000 - $200,000",
|
612 |
+
"skills": "Python, MLOps, Cloud, Software Engineering",
|
613 |
+
"description": "Build and deploy ML models at scale"
|
614 |
+
},
|
615 |
+
"Data Analyst": {
|
616 |
+
"salary": "$70,000 - $110,000",
|
617 |
+
"skills": "SQL, Excel, Visualization, Business Acumen",
|
618 |
+
"description": "Transform data into actionable insights"
|
619 |
+
},
|
620 |
+
"AI Research Scientist": {
|
621 |
+
"salary": "$150,000 - $300,000",
|
622 |
+
"skills": "Deep Learning, Research, Mathematics, Publishing",
|
623 |
+
"description": "Push the boundaries of AI technology"
|
624 |
+
}
|
625 |
+
}
|
626 |
+
|
627 |
+
for role, info in careers.items():
|
628 |
+
with st.expander(f"π {role}"):
|
629 |
+
st.markdown(f"**Salary Range:** {info['salary']}")
|
630 |
+
st.markdown(f"**Key Skills:** {info['skills']}")
|
631 |
+
st.markdown(f"**Description:** {info['description']}")
|
632 |
+
|
633 |
+
if st.button(f"View Learning Path", key=f"path_{role}"):
|
634 |
+
path = calculate_learning_path(skill_level, role)
|
635 |
+
st.markdown("**Recommended Learning Path:**")
|
636 |
+
for i, module in enumerate(path, 1):
|
637 |
+
st.markdown(f"{i}. {module}")
|
638 |
+
|
639 |
+
with tab2:
|
640 |
+
st.markdown("### πΊοΈ Skills Roadmap")
|
641 |
+
|
642 |
+
skill_timeline = {
|
643 |
+
"Month 1-2": ["Python Basics", "Git/GitHub", "SQL Fundamentals"],
|
644 |
+
"Month 3-4": ["Data Analysis", "Statistics", "Visualization"],
|
645 |
+
"Month 5-6": ["Machine Learning", "Feature Engineering", "Model Evaluation"],
|
646 |
+
"Month 7-9": ["Deep Learning", "NLP/Computer Vision", "Cloud Platforms"],
|
647 |
+
"Month 10-12": ["MLOps", "Production Systems", "Advanced Topics"]
|
648 |
+
}
|
649 |
+
|
650 |
+
for period, skills in skill_timeline.items():
|
651 |
+
st.markdown(f"**{period}:**")
|
652 |
+
for skill in skills:
|
653 |
+
st.markdown(f"- {skill}")
|
654 |
+
|
655 |
+
with tab3:
|
656 |
+
st.markdown("### π€ Interview Preparation")
|
657 |
+
|
658 |
+
interview_topics = {
|
659 |
+
"Technical Questions": [
|
660 |
+
"Explain the bias-variance tradeoff",
|
661 |
+
"What is gradient descent?",
|
662 |
+
"Difference between L1 and L2 regularization",
|
663 |
+
"How do you handle imbalanced datasets?"
|
664 |
+
],
|
665 |
+
"Behavioral Questions": [
|
666 |
+
"Tell me about a challenging project",
|
667 |
+
"How do you handle conflicting priorities?",
|
668 |
+
"Describe a time you worked with stakeholders",
|
669 |
+
"How do you stay updated with AI trends?"
|
670 |
+
],
|
671 |
+
"Case Studies": [
|
672 |
+
"Design a recommendation system",
|
673 |
+
"Predict customer churn",
|
674 |
+
"Detect fraudulent transactions",
|
675 |
+
"Optimize marketing campaigns"
|
676 |
+
]
|
677 |
+
}
|
678 |
+
|
679 |
+
for category, questions in interview_topics.items():
|
680 |
+
with st.expander(f"π {category}"):
|
681 |
+
for q in questions:
|
682 |
+
st.markdown(f"β’ {q}")
|
683 |
+
|
684 |
+
if st.button(f"Practice {category}", key=f"practice_{category}"):
|
685 |
+
st.info("Practice session started! Prepare your answers and time yourself.")
|
686 |
+
|
687 |
+
elif menu == "Resume Builder":
|
688 |
+
st.markdown("<h1 class='main-header'>π ATS-Optimized Resume Builder</h1>", unsafe_allow_html=True)
|
689 |
+
|
690 |
+
tab1, tab2, tab3 = st.tabs(["Resume Analysis", "LinkedIn Optimizer", "Cover Letter"])
|
691 |
+
|
692 |
+
with tab1:
|
693 |
+
st.markdown("### π ATS Resume Analyzer")
|
694 |
+
|
695 |
+
job_role = st.selectbox(
|
696 |
+
"Select Target Role",
|
697 |
+
list(JOB_TEMPLATES.keys())
|
698 |
+
)
|
699 |
+
|
700 |
+
resume_text = st.text_area(
|
701 |
+
"Paste your resume text here:",
|
702 |
+
height=300,
|
703 |
+
placeholder="Copy and paste your entire resume content..."
|
704 |
+
)
|
705 |
+
|
706 |
+
if st.button("Analyze Resume"):
|
707 |
+
if resume_text:
|
708 |
+
analysis = analyze_resume_ats(resume_text, job_role)
|
709 |
+
|
710 |
+
# Display ATS Score
|
711 |
+
col1, col2 = st.columns(2)
|
712 |
+
with col1:
|
713 |
+
score_color = "green" if analysis['score'] >= 80 else "orange" if analysis['score'] >= 60 else "red"
|
714 |
+
st.markdown(f"### ATS Score: <span style='color:{score_color}'>{analysis['score']:.0f}%</span>", unsafe_allow_html=True)
|
715 |
+
|
716 |
+
with col2:
|
717 |
+
st.metric("Skills Match", f"{len(analysis['found_skills'])}/{len(JOB_TEMPLATES[job_role]['skills'])}")
|
718 |
+
|
719 |
+
# Found skills
|
720 |
+
if analysis['found_skills']:
|
721 |
+
st.success("β
**Skills Found:**")
|
722 |
+
st.write(", ".join(analysis['found_skills']))
|
723 |
+
|
724 |
+
# Missing skills
|
725 |
+
if analysis['missing_skills']:
|
726 |
+
st.warning("β οΈ **Missing Skills:**")
|
727 |
+
st.write(", ".join(analysis['missing_skills']))
|
728 |
+
|
729 |
+
# Recommendations
|
730 |
+
st.markdown("### π‘ Recommendations:")
|
731 |
+
for rec in analysis['recommendations']:
|
732 |
+
st.markdown(f"β’ {rec}")
|
733 |
+
else:
|
734 |
+
st.error("Please paste your resume text")
|
735 |
+
|
736 |
+
with tab2:
|
737 |
+
st.markdown("### π LinkedIn Profile Optimizer")
|
738 |
+
|
739 |
+
linkedin_sections = {
|
740 |
+
"Headline": "Data Scientist | Machine Learning | Python | Transforming Data into Insights",
|
741 |
+
"Summary": "Passionate data scientist with 3+ years of experience in building ML models that drive business value. Skilled in Python, TensorFlow, and cloud deployment.",
|
742 |
+
"Skills": ["Python", "Machine Learning", "Deep Learning", "SQL", "TensorFlow", "PyTorch", "AWS", "Docker"]
|
743 |
+
}
|
744 |
+
|
745 |
+
for section, content in linkedin_sections.items():
|
746 |
+
st.markdown(f"**{section} Template:**")
|
747 |
+
if isinstance(content, list):
|
748 |
+
st.write(", ".join(content))
|
749 |
+
else:
|
750 |
+
st.write(content)
|
751 |
+
|
752 |
+
st.markdown("### π― LinkedIn Tips:")
|
753 |
+
tips = [
|
754 |
+
"Use keywords from job descriptions in your headline and summary",
|
755 |
+
"Add 50+ skills and get endorsements for top skills",
|
756 |
+
"Write detailed descriptions for each role with quantified achievements",
|
757 |
+
"Add relevant certifications and courses",
|
758 |
+
"Engage with content in your field regularly"
|
759 |
+
]
|
760 |
+
|
761 |
+
for tip in tips:
|
762 |
+
st.markdown(f"β’ {tip}")
|
763 |
+
|
764 |
+
with tab3:
|
765 |
+
st.markdown("### βοΈ Cover Letter Generator")
|
766 |
+
|
767 |
+
company_name = st.text_input("Company Name")
|
768 |
+
position = st.text_input("Position")
|
769 |
+
|
770 |
+
if st.button("Generate Cover Letter Template"):
|
771 |
+
if company_name and position:
|
772 |
+
cover_letter = f"""
|
773 |
+
Dear Hiring Manager at {company_name
|