Spaces:
Sleeping
Sleeping
File size: 3,542 Bytes
267744b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
import torch
import torch.nn as nn
import torch.optim as optim
from transformers import BertTokenizer, BertForSequenceClassification
from datasets import load_dataset
from torch.utils.data import DataLoader, Dataset, random_split
from tqdm import tqdm
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load GoEmotions dataset
dataset = load_dataset("go_emotions", split="train")
dataset = dataset.map(lambda x: {"label": x["labels"][0]}) # Convert multi-label to single-label
labels = list(set(dataset["label"])) # Unique labels
num_labels = len(labels)
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
class MoodDataset(Dataset):
def __init__(self, texts, labels):
self.texts = texts
self.labels = labels
def __len__(self):
return len(self.texts)
def __getitem__(self, idx):
inputs = tokenizer(self.texts[idx], return_tensors="pt", padding="max_length", truncation=True, max_length=128)
return {key: val.squeeze(0) for key, val in inputs.items()}, torch.tensor(labels.index(self.labels[idx]))
dataset = MoodDataset(dataset["text"], dataset["label"])
train_size = int(0.8 * len(dataset))
train_set, test_set = random_split(dataset, [train_size, len(dataset) - train_size])
train_loader = DataLoader(train_set, batch_size=32, shuffle=True)
test_loader = DataLoader(test_set, batch_size=32)
model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=num_labels).to(device)
optimizer = optim.AdamW(model.parameters(), lr=2e-5)
criterion = nn.CrossEntropyLoss()
num_epochs = 3
for epoch in range(num_epochs):
model.train()
epoch_loss, correct, total = 0, 0, 0
preds, labels_list = [], []
for batch in tqdm(train_loader, desc=f"Epoch {epoch+1}/{num_epochs} Training"):
optimizer.zero_grad()
inputs = {key: val.to(device) for key, val in batch[0].items()}
labels = batch[1].to(device)
outputs = model(**inputs).logits
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
epoch_loss += loss.item()
correct += (outputs.argmax(dim=1) == labels).sum().item()
total += labels.size(0)
preds.extend(outputs.argmax(dim=1).cpu().numpy())
labels_list.extend(labels.cpu().numpy())
train_acc = accuracy_score(labels_list, preds)
precision, recall, f1, _ = precision_recall_fscore_support(labels_list, preds, average="weighted")
print(f"Epoch {epoch+1}: Loss: {epoch_loss:.4f}, Train Acc: {train_acc:.4f}, Precision: {precision:.4f}, Recall: {recall:.4f}, F1: {f1:.4f}")
# **Evaluate on Test Set**
model.eval()
test_preds, test_labels = [], []
with torch.no_grad():
for batch in tqdm(test_loader, desc="Evaluating on Test Set"):
inputs = {key: val.to(device) for key, val in batch[0].items()}
labels = batch[1].to(device)
outputs = model(**inputs).logits
test_preds.extend(outputs.argmax(dim=1).cpu().numpy())
test_labels.extend(labels.cpu().numpy())
test_acc = accuracy_score(test_labels, test_preds)
precision, recall, f1, _ = precision_recall_fscore_support(test_labels, test_preds, average="weighted")
print(f"Test Accuracy: {test_acc:.4f}, Precision: {precision:.4f}, Recall: {recall:.4f}, F1-score: {f1:.4f}")
# Save model
model.save_pretrained("mood_classifier")
|