Spaces:
Sleeping
Sleeping
<<<<<<< HEAD | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
import torch | |
# Load the tokenizer and model | |
tokenizer = AutoTokenizer.from_pretrained("thethinkmachine/Maxwell-Task-Complexity-Scorer-v0.2") | |
model = AutoModelForSequenceClassification.from_pretrained("thethinkmachine/Maxwell-Task-Complexity-Scorer-v0.2") | |
# Example task | |
task_description = "find a new theory" | |
# Tokenize the input | |
inputs = tokenizer(task_description, return_tensors="pt") | |
# Perform inference | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
complexity_score = torch.sigmoid(outputs.logits).item() | |
print(f"Task Complexity Score: {complexity_score:.4f}") | |
======= | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
import torch | |
# Load the tokenizer and model | |
tokenizer = AutoTokenizer.from_pretrained("thethinkmachine/Maxwell-Task-Complexity-Scorer-v0.2") | |
model = AutoModelForSequenceClassification.from_pretrained("thethinkmachine/Maxwell-Task-Complexity-Scorer-v0.2") | |
# Example task | |
task_description = "find a new theory" | |
# Tokenize the input | |
inputs = tokenizer(task_description, return_tensors="pt") | |
# Perform inference | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
complexity_score = torch.sigmoid(outputs.logits).item() | |
print(f"Task Complexity Score: {complexity_score:.4f}") | |
>>>>>>> b1313c5d084e410cadf261f2fafd8929cb149a4f | |