Spaces:
Sleeping
Sleeping
<<<<<<< HEAD | |
PS C:\Users\NAVYA\Documents\moodify> python emotions.py | |
2025-02-26 20:38:46.440320: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. | |
2025-02-26 20:38:47.658979: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. | |
WARNING:tensorflow:From C:\Users\NAVYA\AppData\Local\Programs\Python\Python311\Lib\site-packages\tf_keras\src\losses.py:2976: The name tf.losses.sparse_softmax_cross_entropy is deprecated. Please use tf.compat.v1.losses.sparse_softmax_cross_entropy instead. | |
Dataset Columns Before Preprocessing: ['text', 'labels', 'id'] | |
Map: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 43410/43410 [00:22<00:00, 1958.97 examples/s] | |
Map: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 5426/5426 [00:03<00:00, 1796.32 examples/s] | |
Map: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 5427/5427 [00:02<00:00, 1936.32 examples/s] | |
Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight', 'pre_classifier.bias', 'pre_classifier.weight'] | |
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference. | |
{'eval_loss': 1.414624571800232, 'eval_accuracy': 0.5748249170659786, 'eval_f1': 0.55625264544128, 'eval_runtime': 37.1848, 'eval_samples_per_second': 145.92, 'eval_steps_per_second': 4.572, 'epoch': 1.0} | |
{'eval_loss': 1.3568519353866577, 'eval_accuracy': 0.5895687430888316, 'eval_f1': 0.5727110766843768, 'eval_runtime': 38.7582, 'eval_samples_per_second': 139.996, 'eval_steps_per_second': 4.386, 'epoch': 2.0} | |
{'train_runtime': 6368.0108, 'train_samples_per_second': 13.634, 'train_steps_per_second': 0.213, 'train_loss': 1.50392983585684, 'epoch': 2.0} | |
100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 1356/1356 [1:46:08<00:00, 4.70s/it] | |
Training completed! | |
Model and tokenizer saved! | |
Evaluating model on test set... | |
100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 170/170 [00:38<00:00, 4.43it/s] | |
Evaluation Results: | |
Test Accuracy: 0.5779 | |
Test F1 Score: 0.5608 | |
C:\Users\NAVYA\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\metrics\_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. | |
_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result)) | |
C:\Users\NAVYA\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\metrics\_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. | |
_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result)) | |
C:\Users\NAVYA\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\metrics\_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. | |
_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result)) | |
Classification Report: | |
precision recall f1-score support | |
0 0.65 0.74 0.69 504 | |
1 0.73 0.86 0.79 252 | |
2 0.47 0.47 0.47 197 | |
3 0.32 0.20 0.25 286 | |
4 0.54 0.35 0.42 318 | |
5 0.46 0.40 0.43 114 | |
6 0.47 0.39 0.43 139 | |
7 0.43 0.61 0.51 233 | |
8 0.60 0.42 0.49 74 | |
9 0.38 0.22 0.28 127 | |
10 0.42 0.37 0.39 220 | |
11 0.48 0.40 0.44 84 | |
12 0.71 0.40 0.51 30 | |
13 0.48 0.39 0.43 84 | |
14 0.59 0.70 0.64 74 | |
15 0.84 0.83 0.83 288 | |
16 0.00 0.00 0.00 6 | |
17 0.52 0.56 0.54 116 | |
18 0.65 0.82 0.72 169 | |
19 0.00 0.00 0.00 16 | |
20 0.56 0.49 0.52 120 | |
21 0.00 0.00 0.00 8 | |
22 0.47 0.08 0.14 109 | |
23 0.00 0.00 0.00 7 | |
24 0.57 0.74 0.64 46 | |
25 0.55 0.47 0.51 108 | |
26 0.42 0.48 0.44 92 | |
27 0.60 0.71 0.65 1606 | |
accuracy 0.58 5427 | |
macro avg 0.46 0.43 0.44 5427 | |
weighted avg 0.56 0.58 0.56 5427 | |
Test results saved to 'test_results.csv'! | |
======= | |
PS C:\Users\NAVYA\Documents\moodify> python emotions.py | |
2025-02-26 20:38:46.440320: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. | |
2025-02-26 20:38:47.658979: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. | |
WARNING:tensorflow:From C:\Users\NAVYA\AppData\Local\Programs\Python\Python311\Lib\site-packages\tf_keras\src\losses.py:2976: The name tf.losses.sparse_softmax_cross_entropy is deprecated. Please use tf.compat.v1.losses.sparse_softmax_cross_entropy instead. | |
Dataset Columns Before Preprocessing: ['text', 'labels', 'id'] | |
Map: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 43410/43410 [00:22<00:00, 1958.97 examples/s] | |
Map: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 5426/5426 [00:03<00:00, 1796.32 examples/s] | |
Map: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 5427/5427 [00:02<00:00, 1936.32 examples/s] | |
Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight', 'pre_classifier.bias', 'pre_classifier.weight'] | |
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference. | |
{'eval_loss': 1.414624571800232, 'eval_accuracy': 0.5748249170659786, 'eval_f1': 0.55625264544128, 'eval_runtime': 37.1848, 'eval_samples_per_second': 145.92, 'eval_steps_per_second': 4.572, 'epoch': 1.0} | |
{'eval_loss': 1.3568519353866577, 'eval_accuracy': 0.5895687430888316, 'eval_f1': 0.5727110766843768, 'eval_runtime': 38.7582, 'eval_samples_per_second': 139.996, 'eval_steps_per_second': 4.386, 'epoch': 2.0} | |
{'train_runtime': 6368.0108, 'train_samples_per_second': 13.634, 'train_steps_per_second': 0.213, 'train_loss': 1.50392983585684, 'epoch': 2.0} | |
100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 1356/1356 [1:46:08<00:00, 4.70s/it] | |
Training completed! | |
Model and tokenizer saved! | |
Evaluating model on test set... | |
100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 170/170 [00:38<00:00, 4.43it/s] | |
Evaluation Results: | |
Test Accuracy: 0.5779 | |
Test F1 Score: 0.5608 | |
C:\Users\NAVYA\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\metrics\_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. | |
_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result)) | |
C:\Users\NAVYA\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\metrics\_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. | |
_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result)) | |
C:\Users\NAVYA\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\metrics\_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. | |
_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result)) | |
Classification Report: | |
precision recall f1-score support | |
0 0.65 0.74 0.69 504 | |
1 0.73 0.86 0.79 252 | |
2 0.47 0.47 0.47 197 | |
3 0.32 0.20 0.25 286 | |
4 0.54 0.35 0.42 318 | |
5 0.46 0.40 0.43 114 | |
6 0.47 0.39 0.43 139 | |
7 0.43 0.61 0.51 233 | |
8 0.60 0.42 0.49 74 | |
9 0.38 0.22 0.28 127 | |
10 0.42 0.37 0.39 220 | |
11 0.48 0.40 0.44 84 | |
12 0.71 0.40 0.51 30 | |
13 0.48 0.39 0.43 84 | |
14 0.59 0.70 0.64 74 | |
15 0.84 0.83 0.83 288 | |
16 0.00 0.00 0.00 6 | |
17 0.52 0.56 0.54 116 | |
18 0.65 0.82 0.72 169 | |
19 0.00 0.00 0.00 16 | |
20 0.56 0.49 0.52 120 | |
21 0.00 0.00 0.00 8 | |
22 0.47 0.08 0.14 109 | |
23 0.00 0.00 0.00 7 | |
24 0.57 0.74 0.64 46 | |
25 0.55 0.47 0.51 108 | |
26 0.42 0.48 0.44 92 | |
27 0.60 0.71 0.65 1606 | |
accuracy 0.58 5427 | |
macro avg 0.46 0.43 0.44 5427 | |
weighted avg 0.56 0.58 0.56 5427 | |
Test results saved to 'test_results.csv'! | |
>>>>>>> b1313c5d084e410cadf261f2fafd8929cb149a4f | |
PS C:\Users\NAVYA\Doc |